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Introduction
Fourth generation 

Baryon Asymmetry of the Universe
W.-S. Hou, Chin. J. Phys. 47, 134 (2009) [arXiv: hep- ph/0803.1234].

Could Strong Yukawa be part of EWSB?
Y. Nambu, EFI preprint 89-08 (1989).
B. Holdom, Phys. Rev. Lett. 57, 2496 (1986).
W.A. Bardeen, C.T. Hill and M. Lindner, Phys. Rev. D 41, 1647 (1990). 

Experimental searches of 4G at CMS

mb� > 495GeV

mt� > 450GeVat 95% C.L.
G. Tonelli, EPS Conference on High-Energy Physics, 2011, Grenoble

A. De Roeck, Lepton Photon Symposium, 2011, Mumbai

Soon could reach to ~ 550 GeV & 600 GeV respectively



Perturbative Unitarity
M.S. Chanowitz, M.A. Furman and I. Hinchliffe, 
Phys. Lett. B 78, 285 (1978); Nucl. Phys. B 153, 402 (1979).

mt� , mb� � 550GeV

EW Precision Constraint

New Heavy “Isospin” of 4G!

We take mQ ≡ mt� = mb�

Dynamical arguments
M.B. Einhorn and G.J. Goldberg, Phys. Rev. Lett. 57, 2115 (1986)

mQ � 3TeV, Q = t�, b�

Theoretical constraints

mt� −mb� � O(50GeV )



We consider 4G quark mass region

500GeV � mQ � 700GeV

Yukawa-coupling is strong, QCD subdominant

0.66 � αY ≡
m2

Q

4πv2
� 1.3 vs αs = 0.1

New Yukawa-bound states of Heavy 4G at LHC!

Heavy “Isospin” determines the spectrum

η(1,8),ω(1,8) ∼ (t̄�t� + b̄�b�)/
√
2

isovectors

isosinglets

π(1,8), ρ(1,8) ∼ [(t̄�t� − b̄�b�)/
√
2, t̄�b�, b̄�t�]



“eta” and “rho” channels are unbound

 dominant 

States C, I, S Higgs Goldstone Gluon

(π1, ω1) 1, (1, 0), (0, 1) − − −
(π8, ω8) 8, (1, 0), (0, 1) − − +

(η1, ρ1) 1, (0, 1), (0, 1) − + −
(η8, ρ8) 8, (0, 1), (0, 1) − + +

− :attractive, +:repulsive, C :Color, I :Isospin, S :Spin

 for SM4 mh � 600GeV

V = Vhiggs + VGoldstone + Vgluon

mG ∼ MW  Subdominant 

 The total potential for Heavy           “Mesons” 

Possible spectrum: 

mπ1 � mω1 � mπ8 � mω8

No “rho”-like state in clear 
contrast with Technicolor! 

Q̄Q
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FIG. 2. Isosinglet and isotriplet masses for
mesons in the 0 channel. Curves S1 (iso-
singlet) and Tl (isotriplet) are the results from
covariant gauge formalism. S2 (isosinglet) and
T2 (isotriplet) are the results from Salpeter's
equation using only positive frequency corn-
ponents. S3 (isosinglet) and T3 (isotriplet) are
the results from Salpeter's equation using both
positive and negative frequency components.

Quark Mass (GeV)

(F. 2ro)y (—q)= J dq'q'(V y + V y ),= 1

mq

(3.4)

(E+2co)g (q) = J dq'q'( V y++ V+y ),~q
where co=+q +m, E is the bound state eigenvalue and

2 '+ 2

V+ =CvQo(Z„)
COCO

2 I

+C Qo(Zp ), +[Z„Qo(Z )—1 ]
COCO CON

&+ 2 I

+Cs 'Qo(ZS), +[ZSQO(ZS)—l]
COCO COCO

L

The coemcients Cv and variables Zz etc. are summarized
in Table I. Details on the method of solution are given in
Ref. [3].
The 0 ground-state masses as a function of quark

mass is shown for the positive frequency only case in Fig.
2, curves S2 and T2. Again the splitting between iso-
singlet (S2) and isotriplet (T2) bound state masses is
striking for the heavy quark mass region, and the isotrip-
let system becomes ultrarelativistic in the region above
m=750 GeV, producing a zero mass bound state atI =1100GeV.
The solution for the positive plus negative, fully cou-

pled system is much more tightly bound as is seen in Fig.
2, curves S3 and T3, where a dramatic departure be-
tween isotriplet (T3) and isosinglet (S3) masses sets in al-
ready at m =400 GeV, and the isotriplet mass plunges to
zero at I =520 GeV. Figure 2 also shows the feature of
the instantaneous approximation that differs from the
CGL approximation, namely the turn-over (and eventual
fall to zero) of the isosinglet bound state mass as a func-
tion of the quark mass. This effect does not yet appear in
Fig. 2 for the isosinglet positive-frequency-only case, but
it does occur at a quark mass above 1.20 TeV for this
case as well.

IV. CONSTRAINTS ON SUPERHEAVY U, D QUARK
LIFETIMES AND ON U-D SPLITTING

Two related questions arise when one considers the
phenomenology of superheavy fermions. A crucial con-
sideration for bound state physics is the comparison of

TABLE I. Coefficients for the 0 channel Sa1peter equation
kernels, Eq. (3.4} and below. Positive signs indicate attractive
interactions and the negative sign a repulsive interaction.

C, I=0
C,I=1

q +q
2qq

3 I
4m. U o2

1 m
4& go

q +q' +Mz
2qq'

S
1 m
4'7T g o
1 m-'

4'77 U o
q +q' +M~

2qq

Focusing on the isotriplet ground-state mass values
versus quark mass curves in Fig. 2 for the three solutions
which were discussed above, we see that the general
features agree though the different relativistic bound state
approximations produce different bound state mass
values for a given quark mass. One can conclude that the
Goldstone-boson —Higgs-boson exchange plays an impor-
tant role in the calculations, that deep binding at or
above 500 GeV quark mass occurs, and that a dramatic
weak isospin mass splitting is produced in the QQ spec-
trum of a degenerate, or nearly so, U, D doublet system.
With the role of isosinglet and isotriplet reversed, the

features just outlined are present also in the J =1 and
0+ bound states, and we display results of calculations
for this system in Figs. 3 and 4. The principal distinction
between 0 on one hand and 1 and 0+ on the other is
the isosinglet-triplet splitting reversal and that the latter
two are typically less tightly bound.
In the next section we take up the question of ul-

traheavy quark decay lifetime and intradoublet mass
splitting constraints.

Collapse?

With (-) frequency

 Bethe-Salpeter equation for      state 

 Relativistic Bethe-Salpeter approach
P. Jain et al., Phys. Rev. D 46, 4029 (1992); ibid. D 49, 2514 (1994)
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      potentials for        state π1±  Quark mass vs meson mass 



 Relativistic expansion for Yukawa-bound system
K. Ishiwata and M.B. Wise, Phys. Rev. D 83, 074015 (2011)

Binding energy and radius      vs a0 mQ

η8
ω8
π8
ρ8

No - freq. contribution
      -      degeneracy
       is bound

ω8π8
ρ8

valid for a0 >
√
3/mQ



 Which one is interesting for early LHC data? 

produced in weak Drell-Yang, no      -fusion   

pair produced in strong, singly produced in weak processesπ8

π1, ω1 gg

 Not efficiently produced

ω8 produced in       -fusion, no      -fusion (Young’s theorem)   ggqq̄

For early LHC phenomenology color-octet, 
isosinglet vector meson      is the most interesting.ω8

< 0|V µ,a|ωb
8(p) >≡ δab

1√
2
fω8mω8�

µ(p)

Decay constant parameter

ξ ≡ fω8

mω8



σ(s) =

�
dτ̂ σ̂(τ̂s)L(τ̂ ;µ2

F )

Hadron-level cross-section

L(τ ;µ2
F ) =

� �
dx1dx2f1(x1;µ

2
F )f2(x2;µ

2
F )δ (τ − x1x2)

µR = µF = mQ 4mQ

Scales are varied

to for open production uncertainty
(qq-bar pair)

Parton luminosity

PDFs

σ̂qq̄→ω8(ŝ) =
32π3α2

s

9m2
ω8

ξ2δ
�
1−m2

ω8
/ŝ
�

Parton-level cross-section
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Decay channels of ω8

Three main decay mechanisms

Annihilation decay ω8 → qq̄, tt̄, t�t̄, b�b̄

Γ(ω8 → qq̄) = ξ2
πα2

s

3
mω8nf

Γ(ω8 → tt̄) = ξ2
πα2

s

3
mω8βt

Free quark decay ω8 → (t�t̄� → bW t̄�), (b�b̄� → tW b̄�)

Γ(ω8 → tt̄�) = ξ2|V ∗
tb�Vt�b� |2

G2
Fm

5
ω8

192π

Γfree � Γt� + Γb�

Γt� = |Vt�b|2
GFm3

t�

8
√
2π

F (m̃W , m̃b)

Vt�b -4th & 3d generation mixing



Meson transition ω8 → π8W, ω1g

Γ(ω8 → π8W ) =
GFm3

ω8

32
√
2π

mω8

mπ8

W (m̂π8 , m̂W )

Γ(ω8 → ω1g) =
αs

18

m2
ω8

mω1

G(m̂ω1)

Γ(ω8 → π8γ) �
α

3

(∆m)3

m2
Q

∆m ≡ mω8 −mπ8Here                                     due to Strong binding

ξ = 0.1,∆m = 100 GeV, Vt�b = 0.1
ξ = 0.03,∆m = 100 GeV, Vt�b = 0.1

ξ = 0.1,∆m = 200 GeV, Vt�b = 0.1
ξ = 0.1,∆m = 100 GeV, Vt�b = 0.01

Four different choices for parameters for decay rate calculation

Case 1
Case 2

Case 3
Case 4

“nominal”

“small        ”fω8

“strong binding”

“small mixing”
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∆m < MW
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Total decay width of      andω8 π8
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Discussion

tW+t̄�W−
soft bW+b̄�W−

soft

Signal for                                  softqq̄ → ω8 → π8W

With soft W & Z, final state is complex for free decay

If boosted t & W can be used to isolate, Wsoft can be a tag
Can be included in        search
If total jet mass resolution is good both colored pion and 
omega can be discovered

tW+bW−

Charged octet pion channel: Wsoft + 7jets system

π+
8 W−

soft

tt̄W



{W+gW−
soft, ZgZsoft}

For case 4 with small mixing, the signal gives W g resonance of ~TeV

fairly unique. Study is ongoing, tune in for next talk

                  <1%, but photon detection efficiency highω8 → π8γ

{bW+t̄�, tW−b̄�}Zsoft

Neutral octet pion channel

Multijets with t & W substructure, Z +6/8jets narrow resonance
Dilepton ID for Zsoft reduces branching fraction 

π0
8 Zsoft

π8W



• 4G quarks with 500-700 GeV mass could result Yukawa-bound 
mesons.

• Studies of strong Yukawa suggest heavy mesons of 4g

• Spectrum is determined by isospin dependent Goldstone 
potential

• Spectrum very distinct from models like technicolor

• We studied their phenomenology at early run of LHC

• Production of color-octet isosinglet vector resonance (“g-prime”)

• Color-octet “pion” mostly decay via free quark decay leading to 
multijet final states or as Wg resonance for small mixing

• Their presence give more complex phenomena for 4G search than 
the no-bound state case

Conclusions


