Measuring CKM4 at LHC

Fanrong Xu

National Taiwan University

Jan. 19-20, 2012 Focus Workshop on Heavy Quarks at LHC

(Based on W.-S. Hou, M. Kohda and F. Xu, PRD 84, 094027 (2011))

(日) (월) (분) (분)

E

Outline

Introduction

3 new measurements

$$\begin{array}{l} B_s \rightarrow \mu^+ \mu^- \\ B^0_s \rightarrow J/\psi \phi(f_0) \\ B \rightarrow K^* \mu^+ \mu^- \end{array}$$

Constraint from $b \rightarrow s$ decay

Constraint from b' and t' decay

Constraint from $b \rightarrow d$ decay

Summary

<<p>< □ > < □ > < □ > < □ >

- ∃ ⊧

Introduction

Mini-review

Four statements about the fourth generation

Bob Holdom¹, WS Hou², Tobias Hurth³, Michelangelo L Mangano^{*3}, Saleh Sultansoy⁴ and Gokhan Ünel⁵

Published: 28 September 2009 PMC Physics A 2009, 3:4 doi:10.1186/1754-0410-3-4 Received: 19 August 2009 Accepted: 28 September 2009 famous

- 4 ⊒ ▶

Sac

(100 ~ 499 cites)

• □ ▶ • 4 □ ▶ • Ξ ▶

Abstract

This summary of the Workshop "Beyond the 3-generation SM in the LHC era" presents a brief discussion of the following four statements about the fourth generation: 1) It is not excluded by EW precision data; 2) It addresses some of the currently open questions; 3) It can accommodate emerging possible hints of new physics; 4) LHC has the potential to discover or fully exclude it.

Prof. Yuan's talk ("From Top to Heavy Quark") in the morning

Introduction

- Direct search at LHC Prof. Chen's talk
 - t' quark
 - $m_{t'} > 450 \text{GeV} @95\% \text{CL}$, "CMS PAS EXO-11-051", 2011/07/22
 - $m_{t'}$ > 490GeV @95%CL, 1.1 fb^{-1} , "CMS PAS EXO-11-054", 2011/10/04
 - b' quark

 $m_{b'} > 495 \text{GeV} @95\% \text{CL}, 1.14 \text{fb}^{-1}$ "CMS PAS EXO-11-036", 2011/08/27

• □ ▶ • □ ▶ • □ ▶

- 4 ⊒ ▶

Introduction

- Direct search at LHC Prof. Chen's talk
 - t' quark

 $m_{t'} > 450 \text{GeV} @95\% \text{CL}$, "CMS PAS EXO-11-051", 2011/07/22

- $m_{t'}$ > 490GeV @95%CL, 1.1 fb^{-1} , "CMS PAS EXO-11-054", 2011/10/04
- b' quark

 $m_{b'} > 495 \text{GeV} @95\% \text{CL}, 1.14 \text{fb}^{-1}$ "CMS PAS EXO-11-036", 2011/08/27

"Indirect search" in flavor physics

-constraints of flavor mixing matrix from FCNC processes

- $\mathcal{B}(B_s \to \mu^+ \mu^-)$
- $\sin 2\Phi_{B_s}$ from $B_s \to J/\psi \phi$
- A_{FB} of $B_d \to K^* \mu^+ \mu^-$

$\substack{ c_{X}c_{X}c_{y} \\ -a_{X}c_{2}a_{Y}a_{y}a_{y}e_{1}(\phi_{0}-\phi_{1}) \\ -a_{2}a_{0}c_{Y}a_{y}e_{1}(\phi_{0}-\phi_{1}) }$	$a_{\chi^{C}\chi^{C}\psi}$ $i - a_{\chi^{D}\psi}a_{\psi}e^{i(\phi_{2} - \phi_{1})}$	Iszcue-19	1+8 _x C2 ⁸ vCv ^{e-19} 2 1+8 _x C2 ⁸ vCv ^{e-19} 2 1+8 _x 8 _v Cv ^{cv^{e-19}1}
$\begin{array}{c} = s_{x}c_{y}c_{y}\\ = c_{x}s_{y}s_{2}c_{y}s^{1}\psi_{1}\\ = c_{x}c_{y}s_{1}s_{y}s^{1}(\psi_{3}-\psi_{2})\\ = s_{y}c_{x}s_{1}c_{y}s_{1}s_{0}s^{1}(\psi_{3}-\psi_{2})\\ = s_{y}c_{x}s_{1}c_{y}s_{0}s^{1}(\psi_{3}-\psi_{2}+\psi_{1})\\ + s_{y}s^{1}(\psi_{3}-\psi_{2}+\psi_{1})\end{array}$	c _X c _y c _y -a _X a _Y a _Z c _y c ¹⁴ 1 -a _Y c _Z a ₁₁ a _y c ¹⁴ 2	syc2cu	$\begin{array}{l} (c_{x}c_{y}a_{y}c_{y}a^{-1}\phi_{2} \\ (-a_{x}c_{y}a_{y}a^{-1}\phi_{3} \\ (+a_{y}c_{y}a_{y}a^{-1}\phi_{3} \\ (+a_{y}c_{y}a_{y}a_{y}a^{-1}\phi_{3} \\ (+a_{y}a_{y}a_{y}a_{y}a^{-1}) \\ (-c_{x}a_{y}a_{y}a_{y}a_{y}a^{-1} \\ (+c_{y}c^{-1}(\phi_{2}-\phi_{1}) \\ ($
$\begin{array}{c} -c_{\chi}c_{\chi}a_{2}c_{U}e^{\frac{1}{2}\Psi_{1}}\\ +a_{\chi}a_{\gamma}c_{U}\\ +c_{\chi}a_{\chi}a_{\chi}a_{U}e^{\frac{1}{2}(\psi_{3}-\psi_{2})}\\ -c_{\chi}c_{2}a_{U}c_{\mu}a_{U}e^{\frac{1}{2}\psi_{3}}\\ +a_{\chi}c_{\gamma}a_{2}a_{\psi}\\ +a_{U}e^{\frac{1}{2}(\psi_{3}-\psi_{2}+\psi_{1})}\end{array}$	-c _X 0yc _V -s _X c _Y S _Z c _V e ¹⁹ 1 -c _Y c _Z S _U S _V e ¹⁹ 2 	cycgcu	$\begin{array}{c} (\gamma^{C}_{2}\pi^{U}\zeta^{V}\zeta^{U}_{2}) \\ (-\zeta_{x}a_{y}a_{y}c_{U}c_{1}a_{1}a_{2}c_{1}a_{1}a_{2}a_{1}c_{1}c_{1}a_{2}a_{2}a_{1}c_{1}c_{1}a_{2}a_{2}a_{1}c_{1}c_{1}a_{2}a_{2}a_{2}a_{2}a_{1}c_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a$
-cucyaye140	-cusve192	· -*.	1 cucycu

Hou-Son∰Stege∰1987 ≣ ▶ 4 ≣ ▶ ≣ ∽ Q (~

 $\begin{array}{l} B_{s} \rightarrow \mu^{+}\mu^{-} \\ B_{s}^{0} \rightarrow J/\psi\phi(f_{0}) \\ B \rightarrow K^{*}\mu^{+}\mu^{-} \end{array}$

3 New Measurements

Fanrong Xu Measuring CKM4 at LHC

4 日 + 4 団 + 4 三 + 4 三 +

₹

DQC

$$B_{3} \rightarrow \mu^{+}\mu^{-}$$
(21.12) MINIMUM PRODUCTION TABLE TO THE TABLE THE TAB

Fanrong Xu Measuring CKM4 at LHC

$$B_{s} \rightarrow \mu^{+}\mu^{-}$$

$$B_{s}^{0} \rightarrow J/\psi\phi(f_{0})$$

$$B \rightarrow K^{*}\mu^{+}\mu^{-}$$

$$B_s
ightarrow \mu^+ \mu^-$$

- ▶ large uncertainty: $\mathcal{B}(B_s \to \mu^+ \mu^-) \propto f_{B_s}^2$
- note $\Delta m_{B_s} \propto f_{B_s}^2 \hat{B}_{B_s}$
- reduce the uncertainty to bag parameter: $\frac{\mathcal{B}(B_{s} \to \mu^{+}\mu^{-})}{\Delta m_{B_{s}}|^{th} / \Delta m_{B_{s}}|^{exp}}$ $\mathcal{B}(B_{s} \to \mu^{+}\mu^{-}) = C \frac{\tau_{B_{s}}\eta_{Y}^{2}}{\hat{B}_{B_{s}}\eta_{B}} \frac{|\lambda_{t}^{SM}Y_{0}(x_{t}) + \lambda_{t'}\Delta Y_{0}|^{2}}{|\Delta_{12}^{s}| / \Delta m_{B_{s}}|^{exp}}$

with $\lambda_{t'} = V_{t'b} V_{t's}^*$

5990

< A > < > >

 $B_s^0 \to J/\psi \phi(f_0)$

Fanrong Xu Measuring CKM4 at LHC

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶

 $B_{\rm e}^0 \rightarrow J/\psi \phi(f_0)$

 $B_s^0 \to J/\psi \phi(f_0)$

 $\begin{array}{l} \text{Introduction}\\ \textbf{3 new measurements}\\ \text{Constraint from } b \rightarrow s \ \text{decay}\\ \text{Constraint from } b' \ \text{and } t' \ \text{decay}\\ \text{Constraint from } b \rightarrow d \ \text{decay}\\ \text{Summary} \end{array}$

$$\begin{array}{l} B_{\rm S} \rightarrow \mu^+ \mu^- \\ B_{\rm S}^0 \rightarrow J/\psi \phi(f_0) \\ B \rightarrow K^* \mu^+ \mu^- \end{array}$$

$\sin 2\Phi_{B_s}$

► The time-dependent CPV (TCPV) asymmetry for $B_s \rightarrow J/\psi \phi(f_0)$

 $A(\Delta t) = -(\mathcal{S}_{J/\psi\phi} \sin(\Delta M_{B_s} \Delta t) + \mathcal{R}_{J/\psi\phi} \cos(\Delta M_{B_s} \Delta t))$

$$S_{J/\psi\phi} \cong \sin 2\Phi_{B_s}$$

free of hadronic uncertainty

4 回 b 4 同 b 4 回 b 4 回 b

3 new measurements Constraint from b' and t' decay

$$\begin{array}{l} B_{\rm S} \rightarrow \mu^+ \mu^- \\ B_{\rm S}^0 \rightarrow J/\psi \phi(f_0) \\ B \rightarrow K^* \mu^+ \mu^- \end{array}$$

sin 20_{Bc}

The time-dependent CPV (TCPV) asymmetry for $B_s \rightarrow J/\psi \phi(f_0)$

 $A(\Delta t) = -(S_{J/\psi \phi} \sin(\Delta M_{B_s} \Delta t) + \mathcal{A}_{J/\psi \phi} \cos(\Delta M_{B_s} \Delta t))$

fr

$$S_{J/\psi \phi} \cong \sin 2\Phi_{B_s}$$

 $2\Phi_{B_s} = Arg(M_{12}^s)$

$$\frac{\bar{b} \qquad u, c, t, t' \qquad \bar{s}}{M_{12}^{s} = \frac{G_F^2 M_W^2}{12\pi^2} m_{B_s} f_{B_s}^2 \hat{B}_{B_s} \eta_B \left[\left(\lambda_t^{SM} \right)^2 S_0 + 2\lambda_t^{SM} \lambda_{t'} \Delta S_0^{(1)} + \lambda_{t'}^2 \Delta S_0^{(2)} \right]$$
with $\lambda_t^{SM} = V_{ts}^* V_{tb}$, $\lambda_{t'} = V_{t's}^* V_{t'b}$ $(1 + 1)^2 M_{t'} + 2\lambda_t^{SM} \lambda_{t'} \Delta S_0^{(1)} + \lambda_{t'}^2 \Delta S_0^{(2)} \right]$
Farrong XU Measuring CKM4 at LHC

A_{FB} of $B o K^* \mu^+ \mu^-$

▲□▶▲舂▶▲≧▶▲≧▶ ≧ め�?

$$\begin{array}{l} B_{\rm S} \rightarrow \mu^+ \mu^- \\ B_{\rm S}^0 \rightarrow J/\psi \phi(f_0) \\ B \rightarrow K^* \mu^+ \mu^- \end{array}$$

Fanrong Xu Measuring CKM4 at LHC

$$B_{s} \rightarrow \mu^{+}\mu^{-}$$
$$B_{s}^{0} \rightarrow J/\psi\phi(f_{0})$$
$$B \rightarrow K^{*}\mu^{+}\mu^{-}$$

A_{FB} of $B o K^* \mu^+ \mu^-$

Summary of Theoretical status

• The contribution of heavy quark to $b \rightarrow s \ell^+ \ell^-$

W.-S. Hou, R.S. Willey and A. Soni, Phys. Rev. Lett. 58, 1608 (1987)

• $B \rightarrow K^* \ell^+ \ell^-$ @ NLL , naive factorization

A. Ali, P. Ball, L. T. Handoko,and G. Hiller, PRD 61, 074024 (2000)

A. J. Buras, M. Münz, PRD 52, 186 (1995), · · ·

• $B \to K^* \ell^+ \ell^-$ @ NNLL , QCDF/SCET

Formulation

U. Egede, T. Hurth, J. Matias, M. Ramon, W. Reece, JHEP11 (2008) 032

Wilson coefficient

C. Bobeth, M. Misiak, J. Urban, NPB 574 (2000) 291;

C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, JHEP 04 (2004) 071

H. Asatryan, H. Asatrian, C. Greub, M. Walker, PLB 507 (2001) 162

Form factor:

M. Beneke, Th. Feldmann, NPB 592 (2001) 3

▲□▶▲圖▶▲≣▶▲≣▶ ≣ 少へで

 $B_{s} \rightarrow \mu^{+}\mu^{-}$ $B_{s}^{0} \rightarrow J/\psi\phi(f_{0})$ $B \rightarrow K^{*}\mu^{+}\mu^{-}$

 A_{FB} of $B o K^* \mu^+ \mu^-$

Decay amplitude

$$\mathcal{M}_{b \to s\ell^+\ell^-} = -\frac{G_F \alpha}{\sqrt{2}\pi} \lambda_t \Big[\widetilde{C}_9^{\text{eff}}(\bar{s}\gamma_\mu \mathbb{P}_L b)(\bar{\ell}\gamma^\mu \ell) + \widetilde{C}_{10}^{\text{eff}}(\bar{s}\gamma_\mu \mathbb{P}_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) \\ -2\frac{m_b}{q^2} \widetilde{C}_7^{\text{eff}}(\bar{s}i\sigma^{\mu\nu}q_\nu \mathbb{P}_R b)(\bar{\ell}\gamma^\mu \ell) \Big]$$

Fanrong Xu Measuring CKM4 at LHC

(日)

₹

DQC

 $\begin{array}{l} \text{Introduction}\\ \textbf{3 new measurements}\\ \text{Constraint from } b \rightarrow s \ \text{decay}\\ \text{Constraint from } b' \ \text{and } t' \ \text{decay}\\ \text{Constraint from } b \rightarrow d \ \text{decay}\\ \text{Constraint from } b \rightarrow d \ \text{decay}\\ \text{Summary} \end{array}$

$$B_{s} \rightarrow \mu^{+}\mu^{-}$$

$$B_{s}^{0} \rightarrow J/\psi\phi(f_{0})$$

$$B \rightarrow K^{*}\mu^{+}\mu^{-}$$

 A_{FB} of $B o K^* \mu^+ \mu^-$

Decay amplitude

$$\mathcal{M}_{b\to s\ell^+\ell^-} = -\frac{G_F\alpha}{\sqrt{2}\pi}\lambda_t \Big[\widetilde{C}_9^{\text{eff}}(\bar{s}\gamma_\mu\mathbb{P}_Lb)(\bar{\ell}\gamma^\mu\ell) + \widetilde{C}_{10}^{\text{eff}}(\bar{s}\gamma_\mu\mathbb{P}_Lb)(\bar{\ell}\gamma^\mu\gamma_5\ell) \\ -2\frac{m_b}{q^2}\widetilde{C}_7^{\text{eff}}(\bar{s}i\sigma^{\mu\nu}q_\nu\mathbb{P}_Rb)(\bar{\ell}\gamma^\mu\ell) \Big]$$

take naive factorization as the example

$$\frac{dA_{FB}}{dq^{2}} \propto Re(\widetilde{C}_{9}^{eff}\widetilde{C}_{10}^{*}) + F \ Re(\widetilde{C}_{7}^{eff}\widetilde{C}_{10}^{*})$$

with
$$\widetilde{C}_i = \widetilde{C}_i^t + rac{\lambda_{t'}}{\lambda_t} \Delta C_i$$
 in SM4.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{array}{l} B_{S} \rightarrow \mu^{+}\mu^{-} \\ B_{S}^{0} \rightarrow J/\psi\phi(f_{0}) \\ B \rightarrow K^{*}\mu^{+}\mu^{-} \end{array}$$

$$A_{FB}$$
 of $B o K^* \mu^+ \mu^-$

Some remarks

- C₁₀ is general complex
- In realistic calculation, NLO Wilson coefficients, O(a_s) order soft form factors, and non-factorization contribution are included
- QCDF/SCET approach is applicable only at $q^2 < 6 GeV^2$
- The A_{FB} zero crossing point s₀ is free of hadronic uncertainty
- Fourth generation information: λ_{t'} = V^{*}_{t's}V_{tb} and m_{t'} can be read from A_{FB} and s₀

• • • • • • • • •

Constraint of $V_{t'b}V_{t's}^*$

DQC

Fanrong Xu Measuring CKM4 at LHC

Contours in (r_{sb}, ϕ_{sb})

$$\lambda_{t'} = V_{t'b}^* V_{t's} = r_{sb} e^{i\phi_{sb}}, m_{t'} = 550 GeV$$

sin $2\Phi_{B_s}$ and $\mathcal{B}(B_s \to \mu^+ \mu^-)$ contours are combined to determine the possible regions.

<<p>< □ > < □ > < □ > < □ >

Allowed (r_{sb}, ϕ_{sb}) region

 $m_{t'} = 550 GeV, LHCb > 1 fb^{-1}$ (2012)

- 4 日 1 4 H 1 4 H

Allowed region and A_{FB}

- further discrimination from A_{FB} and s₀
- different behaviors of A_{FB}
- some parameter space can be excluded by LHCb

$$|V_{t'b}V_{t's}^*| \le 0.008$$
 for $m_{t'} = 550 GeV$

Image: Image:

$b \rightarrow s$ quadrangle

- " $b \rightarrow d$ " triangle has been examined a lot
- $b \rightarrow s$ relevant to BAU
- once $m_{t'}$ is known, $b \rightarrow s$ quadrangle can be determined

Image: A matrix and a matrix

Constraint of $|V_{t'b}|$ and $|V_{tb'}|$

▲□▶▲□▶▲□▶▲□▶ □ シタの

Fanrong Xu Measuring CKM4 at LHC

The decay of b' and t'

More than $b' \rightarrow tW$

Y. Chao, K. Chen, S. Chen, W. Hou, B. Huang, Y. Lei, PRD 84, 014029 (2011)

Sar

- When $\left|\frac{V_{cb'}}{V_{tb'}}\right| > 0.7, b' \rightarrow cW$ will dominate.
- Assuming b' → t'W* and b' → tW to be two dominant modes, B(b' → t'W*) is ploted above, which depends on V_{tb'}.
- ► Once *m_{b'}* and relevant branching ratios are measured, mixing matrix can be determined.

Future constraint of $V_{t'b}V_{t'd}^*$

・ロット 4回ッ 4回ッ 1回 4回ッ

Fanrong Xu Measuring CKM4 at LHC

$b \rightarrow d$

▶ In $b \rightarrow s$, λ_u is neglected, $\lambda_c = -\lambda_t (-\lambda_{t'})$

(미) (광) (분) (분) 분

DQC

$b \rightarrow d$

- ▶ In $b \rightarrow s$, λ_u is neglected, $\lambda_c = -\lambda_t(-\lambda_{t'})$
- But in b → d, λ_u is the same order of λ_t and λ_c (λ_{t'}), should be kept

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$b \rightarrow d$

- ▶ In $b \rightarrow s$, λ_u is neglected, $\lambda_c = -\lambda_t (-\lambda_{t'})$
- But in b → d, λ_u is the same order of λ_t and λ_c (λ_{t'}), should be kept
- The λ_u contribution can be interpreted by exclusive process $B \rightarrow \rho/\pi \ell^+ \ell^-$

4 回 b 4 同 b 4 回 b 4 回 b

$b \rightarrow d$

- ▶ In $b \rightarrow s$, λ_u is neglected, $\lambda_c = -\lambda_t(-\lambda_{t'})$
- But in b → d, λ_u is the same order of λ_t and λ_c (λ_{t'}), should be kept
- The λ_u contribution can be interpreted by exclusive process $B \rightarrow \rho/\pi \ell^+ \ell^-$
- Experimentally, $B \rightarrow \pi \ell^+ \ell^-$ has been measured

$$\mathcal{B}(B \to \pi \ell^+ \ell^-) < 9.1 \times 10^{-8} \text{ @90\%} \text{ (BaBar 2007)}$$

 $\mathcal{B}(B \to \pi \ell^+ \ell^-) < 6.2 \times 10^{-8} \text{ @90\%} \text{ (Belle 2008)}$

< □ > < 同 > < 回 > < 回 > < 回 >

$b \rightarrow d$

- ▶ In $b \rightarrow s$, λ_u is neglected, $\lambda_c = -\lambda_t(-\lambda_{t'})$
- But in b → d, λ_u is the same order of λ_t and λ_c (λ_{t'}), should be kept
- The λ_u contribution can be interpreted by exclusive process $B \rightarrow \rho/\pi \ell^+ \ell^-$
- Experimentally, $B \rightarrow \pi \ell^+ \ell^-$ has been measured

 $\mathcal{B}(B \to \pi \ell^+ \ell^-) < 9.1 \times 10^{-8}$ @90% (BaBar 2007) $\mathcal{B}(B \to \pi \ell^+ \ell^-) < 6.2 \times 10^{-8}$ @90% (Belle 2008)

• How about $\mathcal{B}(B \to \rho \ell^+ \ell^-)$ and A_{FB} ?

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶

1 a a

$b \rightarrow d$

- ▶ In $b \rightarrow s$, λ_u is neglected, $\lambda_c = -\lambda_t(-\lambda_{t'})$
- But in b → d, λ_u is the same order of λ_t and λ_c (λ_{t'}), should be kept
- The λ_u contribution can be interpreted by exclusive process $B \rightarrow \rho/\pi \ell^+ \ell^-$
- Experimentally, $B \rightarrow \pi \ell^+ \ell^-$ has been measured

$$\mathcal{B}(B \to \pi \ell^+ \ell^-) < 9.1 \times 10^{-8}$$
 @90% (BaBar 2007)
 $\mathcal{B}(B \to \pi \ell^+ \ell^-) < 6.2 \times 10^{-8}$ @90% (Belle 2008)

- How about $\mathcal{B}(B \to \rho \ell^+ \ell^-)$ and A_{FB} ?
- In progress ····

4 回 b 4 同 b 4 回 b 4 回 b

1 a a

Summary

The 3 new measurements are studied in SM4.

Fanrong Xu Measuring CKM4 at LHC

(D) (D) (D) (D)

₹

DQC

Summary

- The 3 new measurements are studied in SM4.
- Combining the latest experimental results, with the 2012 expectation, we give new constraints of V_{t'b} V^{*}_{t's}, which helps to determine CKM4.

Image: A matrix and a matrix

Summary

- The 3 new measurements are studied in SM4.
- Combining the latest experimental results, with the 2012 expectation, we give new constraints of V_{t'b} V^{*}_{t's}, which helps to determine CKM4.
- $b \rightarrow s$ quadrangle could be determined.

Image: A matrix and a matrix

Summary

- The 3 new measurements are studied in SM4.
- Combining the latest experimental results, with the 2012 expectation, we give new constraints of V_{t'b} V^{*}_{t's}, which helps to determine CKM4.
- $b \rightarrow s$ quadrangle could be determined.
- From t' and b' decay, some of CKM matrix elements can be determined separately.

Image: A matrix and a matrix

1 a a

Summary

- The 3 new measurements are studied in SM4.
- Combining the latest experimental results, with the 2012 expectation, we give new constraints of V_{t'b} V^{*}_{t's}, which helps to determine CKM4.
- $b \rightarrow s$ quadrangle could be determined.
- From t' and b' decay, some of CKM matrix elements can be determined separately.
- $b \rightarrow d \cdots$

• • • • • • • • •

1 a a