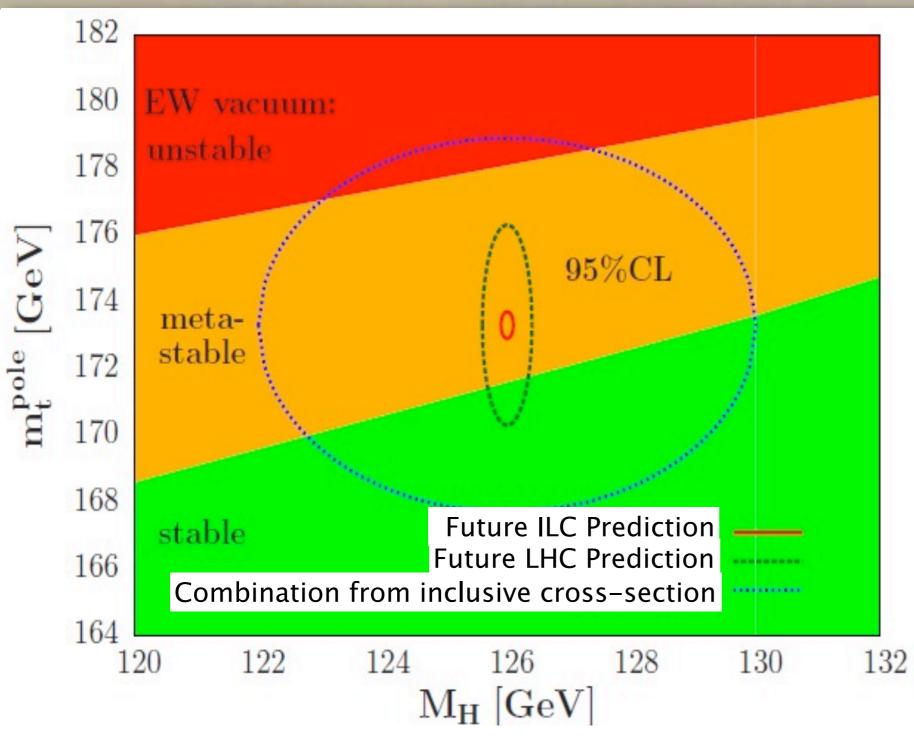
Top Mass at Tevatron

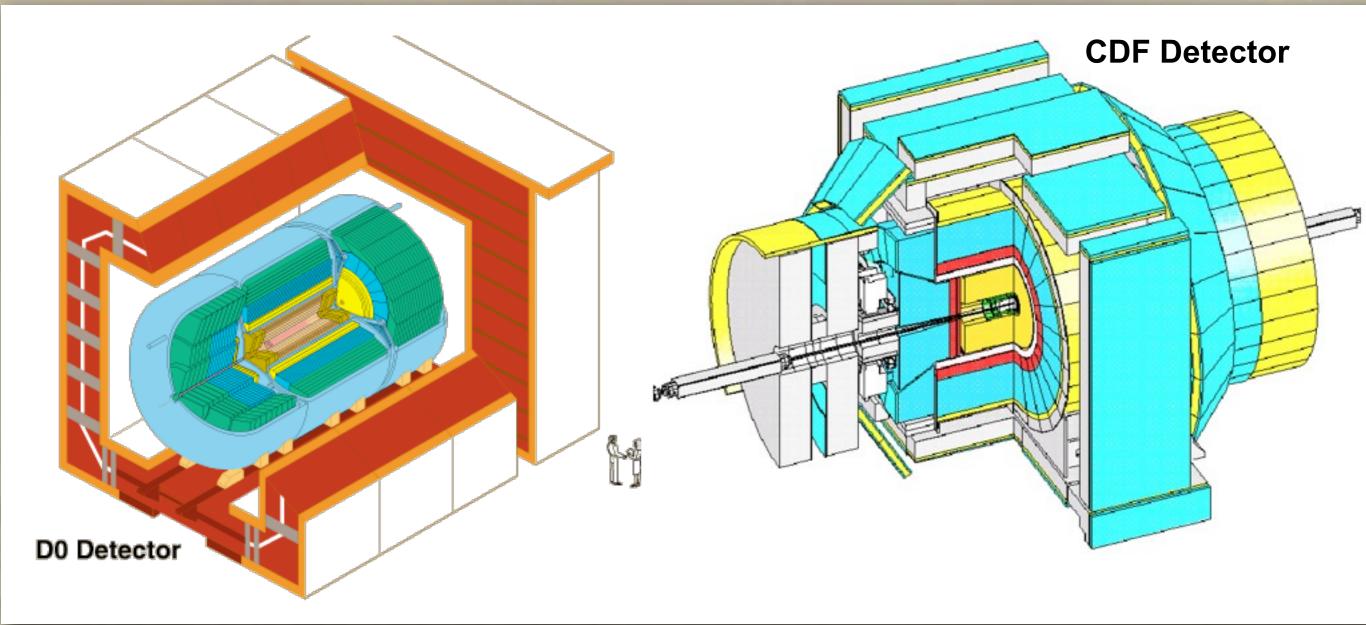
Deciding the fate of the universe....

Combination of the top-quark mass measurements from the Tevatron collider <u>arXiv:1207.1069v3</u>

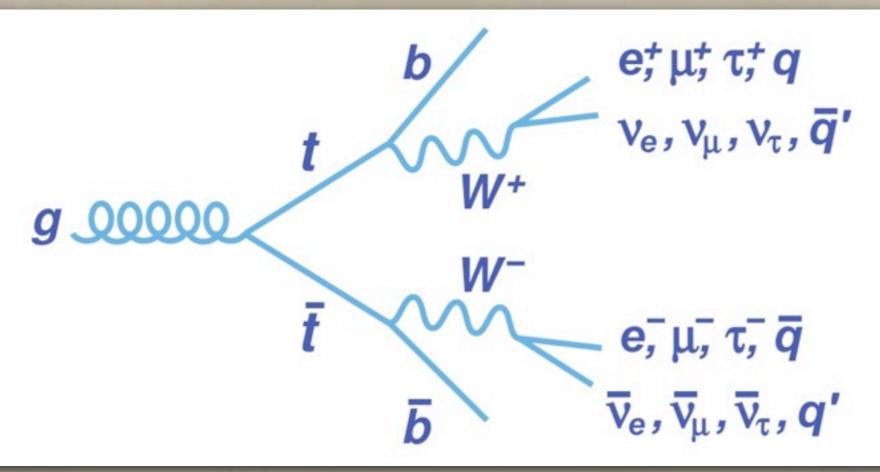

Bei-Zhen Hu

On behalf of AEPSHEP 2012 Group B

David Jennens, Hiroki Makino, Jongkuk Kim, Kinya Oda, KG Tan, Lili Jiang, Matteo Franchini, Morten Dam Joergensen, Petr Katrenko, Tomoe Kishimoto, Tomoko Iwashita, Varchaswi Kashyap, Wajid Ali Khan, Yuhei Ito


October 14-27 2012 AEPSHEP @ Fukuoka, Japan

Why is top mass important?


- •Top has strongest coupling to EWSB sector.
- Vacuum stability depends on m_t (Nojiri's lecture)
 - •m_H ~ 126 GeV potentially observed
- •m_t = 173.2±0.9 GeV @Tevatron most
 - precise measurement

Tevatron

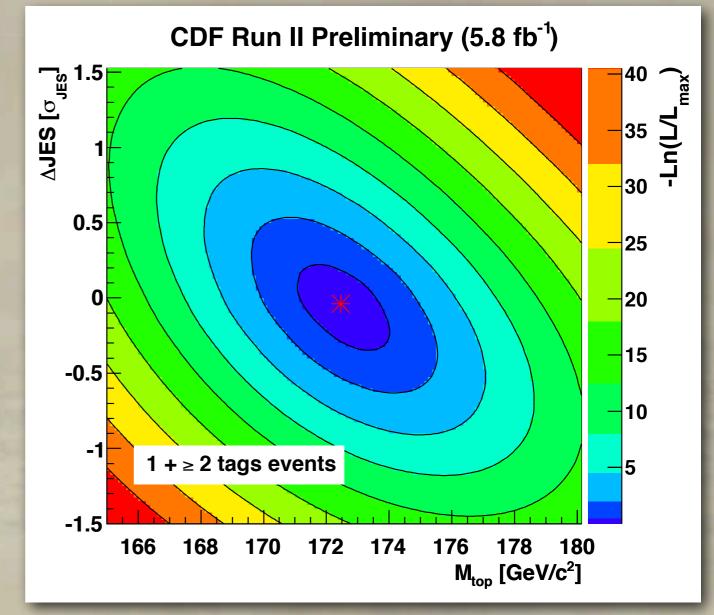
- pp̄ collider, $\sqrt{s} = 1.96 \text{ TeV}$, $\int L dt = 8.7 \text{ fb}^{-1}$
- Hermetic, silicon trackers, calorimeter, muon trackers

ttbar at Tevatron

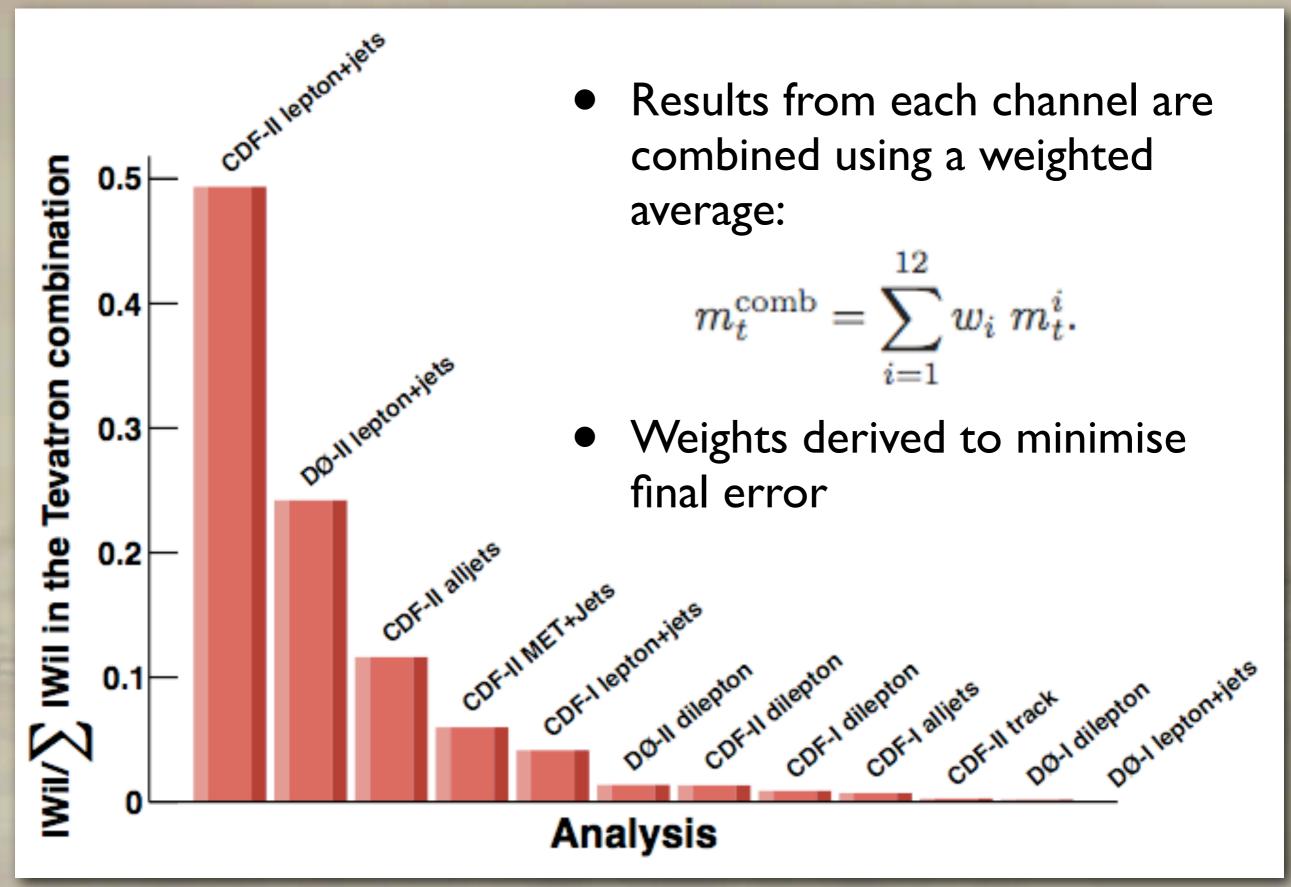
- Split to 4 main channels:
 - $t\bar{t} \rightarrow q\bar{q}'b \ \bar{h}\bar{b}$ (*l*+jets) • $t\bar{t} \rightarrow q\bar{q}'b \ q\bar{q}'\bar{b}$ (all had)
 - $t\bar{t} \rightarrow l\bar{\nu}b l^+\nu\bar{b}$
- (all had) (dilepton)
- $t\bar{t} \rightarrow q\bar{q}'b \quad T/(\rightarrow jet)\bar{v}\bar{b}$ (MET+jets)

Analysis Channels

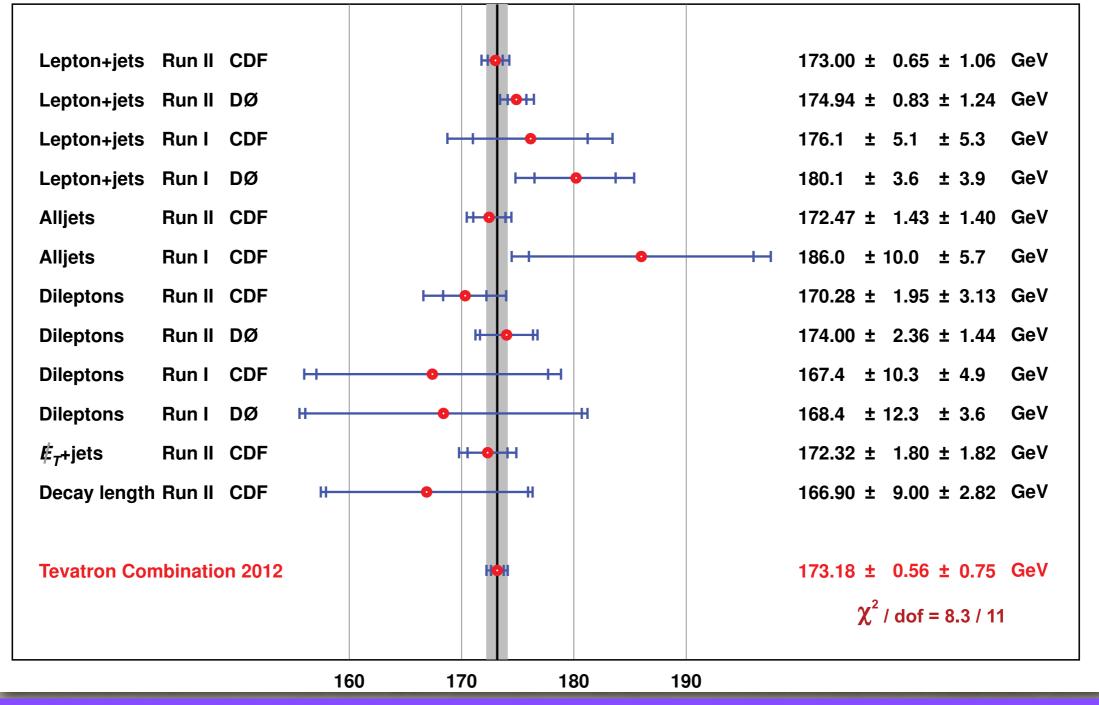
Channel	Lep+jets	All-had	Dilepton	MET+jets
Data	5.6 fb ⁻¹	5.8 fb ⁻¹	5.4 fb ⁻¹	8.7 fb ⁻¹
Nselected	~I.7k	~3.0k	~0.8k	~I.4k
Jets	4 jets I+ b-tag	6+ jets I+ b-tag	2+ jets 0/1 b-tag	4+ jets I+ b-tag
Leptons	I lepton Large MET	Small MET _{sig} :	2 lep (+/-) Large MET	No lepton Large MET _{sig} : $\not \! E_T / \sqrt{\sum E_T^{jet}}$
Main background	W+jets	QCD multijet	Z/γ [*] +jets	QCD multijet


m_{top} extraction

Construct a likelihood trying various M_{top} and JES values for each channel:

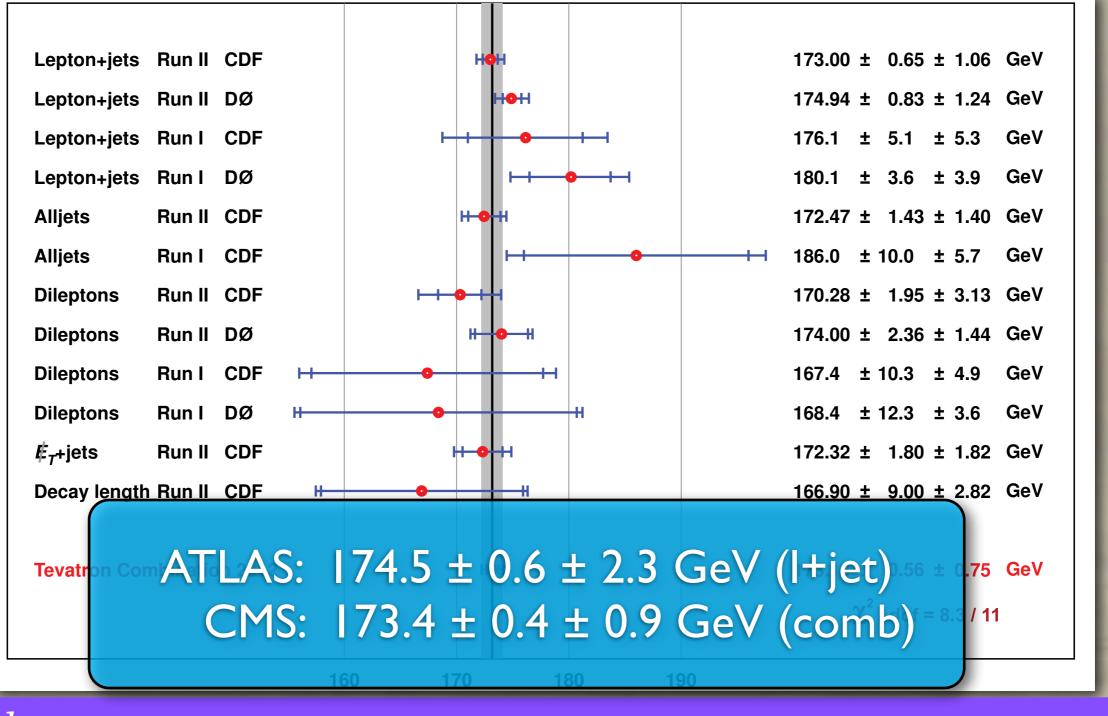

 $\mathcal{L}(M_{top}, \Delta_{JES})$ $M_{top} = MC \text{ top mass}$

 Δ_{JES} = jet energy scale correction factors


The minimum -Ln(L/L_{max}) gives our M_{top}

Combining Results

Results



$m_t^{comb} = 173.18 \pm 0.56 \text{ (stat)} \pm 0.75 \text{ (syst)} \text{ GeV}$

WARNING

mt^{comb} has no theoretically well-defined relationship to mt^{pole}

Results

$n_t^{comb} = 173.18 \pm 0.56 \text{ (stat)} \pm 0.75 \text{ (syst)} \text{ GeV}$

WARNING

mt^{comb} has no theoretically well-defined relationship to mt^{pole}

Summary & Discussion

- Why is top mass important?
 - Fate of universe depends on it!
- How is top mass measured at Tevatron?
 - Mainly by I+jets and all-jets using likelihood methods
- Combination of Tevatron results gives
 - 173.2±0.9 GeV.
- Relation between m_t^{comb} and m_t^{pole} is still under debate
 - Measurement from inclusive cross-section is unambiguous
 - Best to measure at high energy e⁺e⁻ (e.g. ILC)

Thank you for listening!

Thanks to all of members of Group B

Summary & Discussion

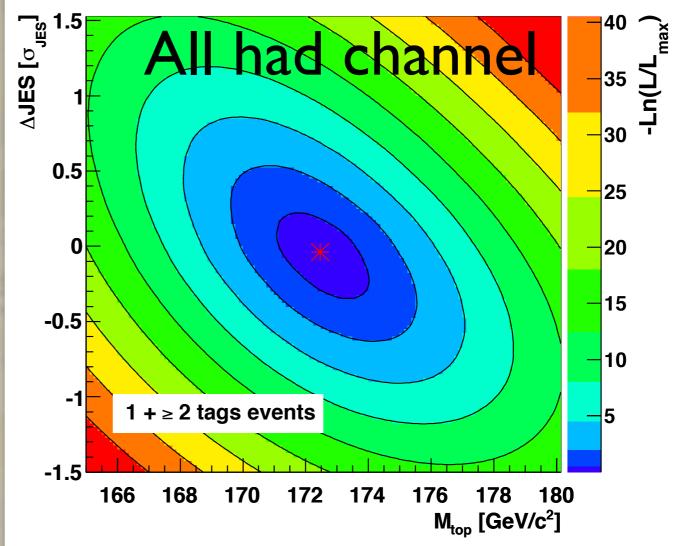
- Why is top mass important?
 - Fate of universe depends on it!
- How is top mass measured at Tevatron?
 - Mainly by I+jets and all-jets using likelihood methods
- Combination of Tevatron results gives
 - $m_t = 173.2 \pm 0.9$ GeV.
- Relation between mt^{comb} and mt^{pole} is still under debate
 - Measurement from inclusive cross-section is unambiguous
 - Best to measure at high energy e⁺e⁻ (e.g. ILC)

Backups

m_{top} extraction

lep+jets

Matrix element


 $\mathcal{L}(M_{top}, \Delta_{JES})$ all others

- PDF derived from:
- I. LO S-matrix element for given M_{top}
- 2. Transfer function which maps given Δ_{JES}

Template fitting

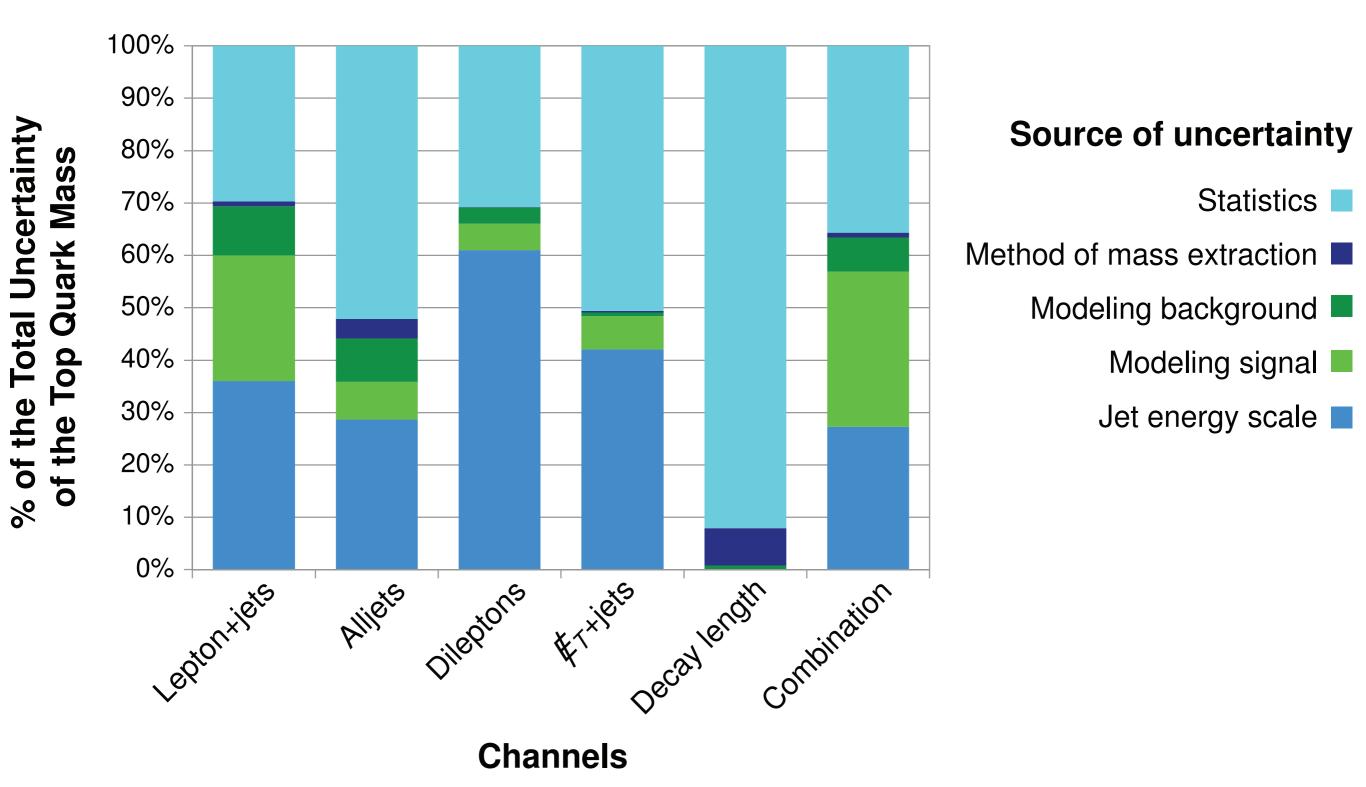
PDF derived by fitting Monte Carlo samples with a given m_{top} and Δ_{JES}

CDF Run II Preliminary (5.8 fb⁻¹)

BLUE

- correlated input values
- Features:
 - I. Linear combination of individual estimates
 - 2. unbiased estimate
 - 3. minimum possible variance sigma²

• Best Linear Unbiased Estimator • Weighted average with • Best Linear Unbiased Estimator • Weighted average with • Weighted average with


 $\hat{y} = \sum \alpha_i \ y_i$ $\sum \alpha_i = 1$ $\sigma^2 = \alpha^T \mathbf{E} \alpha$ $\alpha = \mathbf{E}^{-1} \mathbf{U} / (\mathbf{U}^{\mathrm{T}} \mathbf{E}^{-1} \mathbf{U})$

http://www.sciencedirect.com/science/article/pii/0168900288900186

Combining Results

			Lepton+jets Run II CDF	Lepton+jets Run II D0	Lepton+jets Run I CDF	Lepton+jets Run I D0	Alljets Run II CDF	Alljets Run I CDF	Dileptons Run II CDF	Dileptons Run II D0	Dileptons Run I CDF	Dileptons Run I D0	E_T + jets Run II CDF	Decay length Run II CDF	Weight
Lepton+jets	Run II	CDF	100	27	45	25	25	26	44	12	26	11	24	8	55.50
Lepton+jets	Run II	D0	27	100	21	14	16	9	11	39	13	7	15	6	26.66
Lepton+jets	Run I	CDF	45	21	100	26	25	32	54	12	29	11	22	7	-4.72
Lepton+jets	Run I	D0	25	14	26	100	12	14	27	7	15	16	10	5	-0.06
Alljets	Run II	CDF	25	16	25	12	100	15	25	10	15	7	14	4	13.99
Alljets	Run I	CDF	26	9	32	14	15	100	38	6	19	7	14	4	-0.80
Dileptons	Run II	CDF	44	11	54	27	25	38	100	7	32	13	22	6	1.41
Dileptons	Run II	D0	12		12	7	10	6	7	100	8	5	10	3	2.28
Dileptons	Run I	CDF	26	13	29	15	15	19	32	8	100	8	14	4	-1.05
Dileptons	Run I	D0	11	7	11	16	7	7	13	5	8	100	6	2	-0.15
E_T +jets	Run II	CDF	24	15	22	10	14	14	22	10	14	6	100	4	6.65
Decay length	Run II	CDF	8	6	7	5	4	4	6	3	4	2	4	100	0.29

Relative Uncertainties

Systematics Summary

			Light-jet response (1)	Light-jet response (2)	Out-of-cone correction	Offset	Model for b jets	Response to $b/q/g$ jets	In-situ light-jet calibration	Jet modeling	Lepton modeling	Signal modeling	Multiple interactions model	Background from theory	Background based on data	Calibration method	Statistical uncertainty	Total JES uncertainty	Other systematic uncertainty	Total uncertainty
Channel	Run	Exp.		Jet e	energy	scale :	system	atics				Other	syster	natics						
Lepton+jets Lepton+jets Lepton+jets Lepton+jets Alljets Alljets Dileptons Dileptons Dileptons Dileptons $\not\!$	II I I I I I I I I I I I I I I I I I	CDF D0 CDF D0 CDF CDF D0 CDF D0 CDF D0 CDF CDF	0.41 n/a 3.4 n/a 0.38 4.0 2.01 n/a 2.7 n/a 0.45 0.24	$\begin{array}{c} 0.01 \\ 0.63 \\ 0.7 \\ 2.5 \\ 0.04 \\ 0.3 \\ 0.58 \\ 0.56 \\ 0.6 \\ 1.1 \\ 0.05 \\ 0.06 \end{array}$	0.27 n/a 2.7 2.0 0.24 3.0 2.13 n/a 2.6 2.0 0.20 n/a	n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a	$\begin{array}{c} 0.23 \\ 0.07 \\ 0.6 \\ 0.7 \\ 0.15 \\ 0.6 \\ 0.33 \\ 0.20 \\ 0.8 \\ 0.7 \\ 0.00 \\ 0.15 \end{array}$	0.13 0.26 n/e 0.03 n/e 0.14 0.40 n/e n/e 0.12 n/e	0.58 0.46 n/a 0.95 n/a n/a 0.55 n/a n/a 1.54 n/a	0.00 0.36 n/e 0.00 n/e 0.00 0.50 n/e n/e 0.00 0.00	0.14 0.18 n/e n/a n/a 0.27 0.35 n/e n/e n/a n/a	$\begin{array}{c} 0.56 \\ 0.77 \\ 2.7 \\ 1.3 \\ 0.64 \\ 2.1 \\ 0.80 \\ 0.86 \\ 3.0 \\ 1.9 \\ 0.78 \\ 0.90 \end{array}$	0.10 0.05 n/e 0.08 n/e 0.23 0.00 n/e n/e 0.16 0.00	$\begin{array}{c} 0.27 \\ 0.19 \\ 1.3 \\ 1.0 \\ 0.00 \\ 1.7 \\ 0.24 \\ 0.00 \\ 0.3 \\ 1.1 \\ 0.00 \\ 0.80 \end{array}$	0.06 0.23 n/e 0.56 n/e 0.14 0.20 n/e n/e 0.12 0.20	$\begin{array}{c} 0.10\\ 0.16\\ 0.0\\ 0.6\\ 0.38\\ 0.6\\ 0.12\\ 0.51\\ 0.7\\ 1.1\\ 0.14\\ 2.50\end{array}$	$0.65 \\ 0.83 \\ 5.1 \\ 3.6 \\ 1.43 \\ 10.0 \\ 1.95 \\ 2.36 \\ 10.3 \\ 12.3 \\ 1.80 \\ 9.00$	$\begin{array}{c} 0.80 \\ 0.83 \\ 4.4 \\ 3.5 \\ 1.06 \\ 5.0 \\ 3.01 \\ 0.90 \\ 3.9 \\ 2.7 \\ 1.64 \\ 0.25 \end{array}$	$\begin{array}{c} 0.67 \\ 0.94 \\ 2.8 \\ 1.6 \\ 0.91 \\ 2.6 \\ 0.88 \\ 1.11 \\ 3.0 \\ 2.3 \\ 0.78 \\ 2.80 \end{array}$	1.23 1.50 7.3 5.3 2.00 11.5 3.69 2.76 11.4 12.8 2.56 9.43
Tevatron Com	0.12	0.19	0.04	0.00	0.15	0.12	0.39	0.11	0.10	0.51	0.00	0.14	0.11	0.09	0.56	0.49	0.57	0.94		