

SPL cavities design and construction; Design evolution for ESS needs

Ofelia Capatina (CERN), Juliette Plouin (CEA), Guillaume Olry (IPNO) on behalf of the SPL cavity development team

- Collaboration: who is doing what
- SPL equipped cavities
- SPL beta=1 CERN cavities
- Cavity design evolution from SPL to ESS
- Summary

COLLABORATION: WHO IS DOING WHAT?

Beta 0.65 IPN Orsay: 1 cavity with Titanium Helium vessel

Beta 1.0 CEA/Saclay: 1 cavity with Titanium Helium vessel Stainless Steel Helium vessels and tuning systems for the CERN cavities CERN: 4 cavities with Stainless Steel vessels 2 ≠ RF coupler types

BNL: 1 « Universal » cavity

НОМ

Rostock U.: HOM coupler design Royal Holloway U. of London: Cavity-to-cavity coupling effects BNL: Cavity-to-cavity coupling effects & HOM coupler design

SHORT-CRYOMODULE

CERN & IPN Orsay

- Beta = 0.65
 - RF design done by IPNO
 - Mechanical design done by IPNO
 - Titanium helium tank
 - 1 niobium cavity to be manufactured by IPN Orsay
 - To be tested in the "CRYHOLAB" at CEA Saclay
 - CEA tuner
 - CEA main coupler

Configuration to be tested in CRYHOLAB

RF design

\rightarrow Operating gradient: 19 MV/m

Epk/Eacc<2.6 (<-> Epk=50 MV/m) **Bpk/Eacc<5.2 mT**/(MV/m) (<-> Bpk=100 mT)

EM calculations

1/ in 2D with SUPERFISH 2/ in 3D with CST MWS \rightarrow RF coupler integration

f (MHz)	704.0
Epk/Eacc	2.63
Bpk/Eacc (mT/MV/m)	5.12
K (%)	1.45
r/Q (Ohm)	275
G (Ohm)	197
Vacc @βg & 1 Joule (MV)	1.11
Qo (@2K, Rres=2nΩ)	3.9 10 ¹⁰
Transit Time Factor	0.65

Guillaume Olry, IPNO, talk SRF 2011 Chicago

Mechanical design

□ Von Mises stresses for 1.5 bar @ 300K < 50 MPa with 4mm

Cavity walls = 4mm → Niobium cost ~70 k€

Lorentz forces detuning factor : K_L~ -1.6 Hz/(MV/m)²

1 stiffening ring

Guillaume Olry, IPNO, talk SRF 2011 Chicago

- Beta = 1, CEA cavity
 - RF design done by CEA (will be compared later in this talk to ESS design)
 - Mechanical design done by CEA
 - Titanium helium tank
 - 1 niobium cavity to be manufactured by CEA
 - To be tested in the "CRYHOLAB" at CEA Saclay
 - CEA tuner
 - CEA main coupler

Configuration to be tested in CRYHOLAB

BETA 0.65 & BETA=1 COMMON FEATURES

- Orders: end of 2011
- Same helium vessel design and same end-groups

→ Final test in horizontal cryostat with the same auxiliary components (tuning system + RF coupler)

Guillaume Olry, IPNO, talk SRF 2011 Chicago

- Beta = 1, BNL cavities
 - 1 copper cavity and 1 niobium cavity designed and manufactured by BNL
 - Will be presented by Rama Calaga today at 14h00

- Beta = 1, CERN cavities
 - RF design done by CEA
 - Mechanical design done by CEA and CERN
 - Stainless steel helium tank
 - 2 copper cavity manufacturing ongoing at CERN
 - 5 niobium cavities to be manufactured by end 2012
 - 4 in industry (Research Instruments)
 - 1 at CERN
 - To be tested in the short cryo-module at CERN
 - CEA tuner
 - CERN main coupler (talk of Eric Montesions tomorrow)

• A string of 4 "equipped beta=1 cavities" + main coupler to be installed into a short cryo-module by 2013

Short cryo-module design to be done by IPN Orsay (see talk tomorrow by Vittorio Parma) Schematic view of string of 4 "equipped cavities" and main coupler

 SPL beta = 1 cavity + helium tank + tuner + main coupler to be installed and tested in cryo-module at CERN

• SPL beta = 1 cavity + helium tank + tuner + main coupler to be installed and tested in cryo-module at CERN

13

- RF design
 - Done by CEA Saclay in 2009
 - Comparison RF design SPL / ESS later in this talk

- Mechanical dimensioning
 - Static (quasi-static)
 - Lorentz detuning
 - Maximum pressure / sensitivity to fluctuation
 - Deformation for tuning
 - Handling configurations
 - Natural vibration modes
 - Bucking

SPL beta=1 CERN cavities

16

- Helium tank
 - Two configurations designed and partially tested / interfaces: Titanium and Stainless steel
 - Stainless steel helium tank chosen as baseline for CERN cavities
 - Helium ports dimension:
 - The helium ports dimensions were calculated with respect to maximum heat flow to be evacuated through

 Helium tank + tuner act as boundary conditions to cavity => different stiffness gives different deformation of cavity due to Lorentz forces

- Zero tank + tuner stiffness equivalent to free-free BC for cavity
- Infinite tank + tuner stiffness equivalent to fix-fix BC for cavity

SPL beta=1 CERN cavities

19

CERN

SPL beta=1 CERN cavities

Lorentz detuning => min helium tank stiffness 100 kN/mm

- Manufacturing
 - 4 niobium cavities by industry and 1 niobium cavity by CERN by end of 2012
 - Talk by Gonzalo Arnau concerning materials
 - Talk by Said Atieh concerning manufacturing and R&D
 - 2 copper cavities manufacturing ongoing
 - Help to adjust manufacturing parameters and identify possible
 - 1 cavity will be used for HOM measurements
 - 1 cavity will be used for sputtering tests
 - Talk by Nuria Valverde concerning manufacturing
- Cavity preparation
 - Talk by Leonel Marques concerning Elecro-Polishing plant at CERN
 - Field flatness measurement system and tuning system still to be designed
 SLHiPP-1

Cavity design evolution from SPL to ESS

Juliette Plouin CEA-Saclay

Cavity RF design : SPL vs ESS

	RF frequency	704.42 MHz	
SS	Cavity geometrical beta	1	
Ξ	Accelerating gradient	25 MV/m	
ME			
PARAI	Maximum surface E field	40 MV/m	
	Average pulse current	40 mA	
N D	Peak RF power	1 MW	
ESI 6	Repetition frequency	50 Hz	
۵	Duty cycle	5%	
	Operating Temperature	2 K	

Ø96mm

Juliette Plouin CEA-Saclay

METERS	Bpk/Eacc [mT/(MV/m)]	4.20	
	Epk/Eacc	1.99	
	G [Ohm]	270	
\RA	Cell to cell coupling	1.92 %	
F PZ	r/Q [Ohms]	566	
2	$L_{acc} = Ngap.\beta.\lambda/2 [m]$	1.0647	

Ltot≈1393mm

	RF frequency	704.42 MHz	
METERS	Cavity geometrical beta	0.86	
	Accelerating gradient	18 MV/m	
	Q ₀ at nominal field	> 6 10 ⁹	
RA	Maximum surface E field	40 MV/m	
PA	Average pulse current	50 mA	
Z	Peak RF power	900 kW	
ESIC	Repetition frequency	14 Hz	
۵	Beam pulse length	2.86 ms	
	Operating Temperature	2 K	

		Bpk/Eacc [mT/(MV/m)]	4.3
ГСС	RS	Epk/Eacc	2.2
E33	E	G [Ohm]	241
	AZ	Cell to cell coupling	1.8 %
	PAR	r/Q [Ohms]	477
	RF	$L_{acc} = Ngap.\beta.\lambda/2 [m]$	0.915
		Cell wall angle	> 8°

Juliette Plouin CEA-Saclay

SPL and ESS cavities will be equipped with Saclay V type tuners for slow and fast tuning 24

Mechanicals design

- All flanges made of Nb or Nb/Ti
- except the FPC flange, in stainless steel with copper gasket, to be compatible with the HIPPI coupler, and for safety reasons
 - ⇒ intermediate piece in Ti needed

- Helium tank in Ti Bellows (Ti) Intermediate piece in Ti
 - Helium tank in Titanium (limits the differential shrinkage with Nb during cooling down)
 - All flanges made of Nb or Nb/Ti

The position of the HOM ports could change after the prototypes, in relation with HOM couplers studies (SPL and ESS)

Juliette Plouin CEA-Saclay

SLHiPP-1

- ESS cavity without extremity "cones"
 - + easier to extract the HOM propagating in a larger tube
 - + easier for the manufacturing
 - + easier for electro polishing and more generally for cavity cleaning
 - + more rigid, thus less sensitive to Lorentz forces
 - longer cavity (for larger tubes one should increase the length to avoid the fundamental mode to be dissipated on the inter-cavities bellow)
 - bigger flanges
 - a priori more difficult to mount the tuning system

Juliette Plouin CEA-Saclay

Equipment for cavity preparation

SLHiPP-1

- Cavity tuning set-up for field flatness achievement at room temperature (under development)
- Cell by cell tuning between plates
- This set-up is adaptable for both SPL and ESS cavities

- Vertical electro-polishing (installed and tested at Saclay)
- Ready to use for both SPL and ESS cavities

Summary

- Several cavity developments all over the world, related to the SPL project
- They will be tested independently by each collaborator in their own testing facilities
- Cavities to be installed in the SPL cryo-module will be provided by CERN by end of next year:
 - 4 to be manufactured in industry
 - 1 (spare) to be manufactured at CERN
- SPL beta=1 cavity design by CEA was used as basis for beta=0.86 cavity design for ESS