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The Reflection Amplifier 

J. Kline “The magnetron as a negative-resistance amplifier,” 

IRE Transactions on Electron Devices, vol. ED-8, Nov 1961 

 

H.L. Thal and R.G. Lock, “Locking of magnetrons by an injected r.f. signal”, 

IEEE Trans. MTT, vol. 13, 1965 

• Linacs require accurate phase control  

• Phase control requires an amplifier  

• Magnetrons can be operated as reflection amplifiers  
Cavity 
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Compared to Klystrons, in general Magnetrons 

 

  - are smaller 

  - more efficient 

  - can use permanent magnets (at 704 MHz) 

  - utilise lower d.c. voltage but higher current 

  - are easier to manufacture 

 

Consequently they are much cheaper to 

purchase and operate 
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Proof of principle 

Demonstration of CW 2.45 GHz magnetron driving a 

specially manufactured  superconducting cavity in a 

VTF at JLab and the control of phase in the presence of 

microphonics was successful.  
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SCRF cavity powered with magnetron 
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Next Steps 

•  Development of a 704MHz Magnetron (440kW – 880kW ) 

Collaboration with CEERI, Pilani, India  
 

•  Procure standard modulator 

Hope to use klystron modulator with different pulse transformer however 

rate of voltage rise is tightly defined. Need to deal with impedance change 

on start up. The CI have a suitable 3 MW magnetron modulator for short 

pulses up to 5 micro-seconds and could be used for characterisation 
 

•  Establish test station with Television IOT as the drive amplifier  

Could be used for conditioning SPL and ESS components 
 

•  Understand locking characteristics of new magnetron 

•  Commission advanced modulator with in-pulse current control 

•  Establish minimum locking power 

•  Establish two magnetron test stand 

•  Develop LLRF for simultaneous phase and amplitude control 
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Layout using one magnetron per cavity 

Permits fast phase control but only slow, full range amplitude control 
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   i.e. between 18 kW and 44kW hence  

   between 42 kW and 16 kW available 

   for fast  amplitude control 

Could fill cavity with IOT then pulse magnetron when beam arrives 
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Layout using two magnetrons per cavity 

Permits fast full range phase and amplitude control 
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Reflection Amplifier Controllability 

Magnetron frequency and output vary 

together as a consequence of 

1. Varying the magnetic field 

2. Varying the anode current (pushing) 

3. Varying the reflected power (pulling) 

1. Phase of output follows the phase of the input signal 

2. Phase shift through magnetron depends on difference between input frequency and the 

magnetrons natural frequency 

3. Output power has minimal dependence on input signal power 

4. Phase shift through magnetron depends on input signal power 

5. There is a time constant associated with the output phase following the input phase  
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CEERI Collaboration 

Dr Shivendra Maurya of the Microwave Tube Division, CEERI, PILANI, India visited 

Lancaster University from 1st August to 31st November to start work on the design of 

a suitable magnetron. 

This visit has been funded by the Royal Academy of Engineering. 

 

If there is sufficient interest CEERI will seek funding to manufacture the magnetron. 

CEERI already manufacture a range of tubes mainly for use in India.  

S-band, 3.1 MW Pulse Tunable 

Magnetron for Accelerator 

5 MW (pk), 5kW(avg) S-band 

Klystron as RF amplifier for 

injector microtron in 

Synchrotron Radiation Source 

at RRCAT, Indore  
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Specification of initial device 

Frequency    704 MHz 

Power    200 kW to 1 MW 

Pulse length   5ms to 5 ms (for max power) 

Max average power   100 kW 

Efficiency    > 90% above 500 kW 

Magnet   NyFeB  (< 0.5 T) 

External Q   ~ 50 (for ease of locking) 

Mechanical Tunability  ~ 5 MHz 

Cathode heating  indirect and controllable 
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Approximate Calculations 

Power output W 5.26E+05 1.00E+06 Given

Overall efficiency target 0.9066 0.9210 Assumed

DC power W 5.80E+05 1.09E+06 Derived

DC  impedance Ohms 1615 1615 Guessed

Anode voltage 30611 41876 Derived

Anode current 18.954 25.930 Derived

Cathode plus circuit losses 4.00% 4.00% Estimated

electronic efficiency 94.66% 96.10% Derived

V anode over V threshold 1.25 1.25 Assumed

V threshold V 24488 33501 Derived

Modified Slater factor 1.96 2 Assumed

Number of Vanes 14 14 Assumed

Anode radius m 0.02400 0.02401 Calculated

Cathode radius m 0.01775 0.01774 Calculated

Anode height m 0.05536 0.05536 Assumed

Cathode current density A/m^2 3070 4202 Derived

Electric field V/m 9.79E+06 1.34E+07 Derived

Voltage field product kV/mm^2 299.6 559.8 Derived

B T 0.30477 0.41331 Calculated

Using standard theory one can estimate Magnetic field, anode and cathode radii from 

requirement data (frequency 704 MHz, efficiency >90% and power 

Should be able to use same block for efficient generation at 

both the 500 KW and 1 MW level 
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Expected operating range 

VORPAL 

simulations 

Short 

circuit 

regime 

Threshold 

for moding 
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VORPAL Predictions at 30 kV 

Take         

 B = 0.3 T,   

 Va  = 32 kV,   

 Ic = 60 A 

 

Predict       

Ianode = 19 A, 

Efficiency = 92%, 

Power = 560 kW 

Z = 1684 W 
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Moding Issues 

Voltage in magnetron 

time (s) 

time (s) 

time (s) 
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Volts 
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Excitation in the mode at 

1060 MHz might be a 

problem. 

 

We think the coarse 

mesh or other issues with 

the simulation might 

exacerbate the issue.  
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MWS modes 

p mode at 702 MHz 

p1 mode at 1060 MHz p1 mode at 1063 MHz 
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Efficient Orbits 

An efficient orbit should have no loop 
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Magnetron Size 

Magnets 

dg 

dm 
hm 

704 MHz 

dg ~ 360 mm 

dm ~ 165 mm 

hm ~ 650 mm 

cost £8000 

air cooling input 

for dome 

water 

cooling for 

anode 

air cooling 

for cathode 

If magnetron design is 

similar to industrial design 

with similar tolerances and 

can be made on same 

production line then cost 

may not be much more 
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High Efficiency Klystrons 

• Design of high efficiency klystrons for ESS in 

collaboration with CLIC 

– Similar Klystrons (704.4 MHz, 1.5 MW, 70% 

efficiency) allow synergetic activities with CLIC. 

– Focus on understanding of bunching process 

and space charge in the output cavity. 

– Using evolutionary algorithms to improve 

optimisation 

– New design concepts to achieve optimum beam 

modulation 

– Single and Multiple beams investigated 
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