# **SLHC** A magnetron solution for proton drivers



**Amos Dexter** 





Simulation Using Tech-X's VORPAL e.m. code



CÉRN





### **Collaborations**



LancasterRichard Carter, Graeme Burt, Ben Hall, Chris LingwoodJLabHaipeng Wang, Robert RimmerCEERIShivendra Maurya, VVP Singh, Vishnu SrivastavaTechXJonathan SmithCERN?ESS?







of Engineering

# **The Reflection Amplifier**



- Linacs require accurate phase control
- Phase control requires an amplifier
- Magnetrons can be operated as reflection amplifiers



**Compared to Klystrons, in general Magnetrons** 

- are smaller
- more efficient
- can use permanent magnets (at 704 MHz)
- utilise lower d.c. voltage but higher current
- are easier to manufacture

Consequently they are much cheaper to purchase and operate

J. Kline "The magnetron as a negative-resistance amplifier," *IRE Transactions on Electron Devices*, vol. ED-8, Nov 1961

H.L. Thal and R.G. Lock, "Locking of magnetrons by an injected r.f. signal", *IEEE Trans. MTT*, vol. 13, 1965





# **Proof of principle**



Demonstration of CW 2.45 GHz magnetron driving a specially manufactured superconducting cavity in a VTF at JLab and the control of phase in the presence of microphonics was successful.





LANCASTER

UNIVERSI



#### SCRF cavity powered with magnetron







# **Next Steps**



- Development of a 704MHz Magnetron (440kW 880kW)
   Collaboration with CEERI, Pilani, India
- Procure standard modulator
  - Hope to use klystron modulator with different pulse transformer however rate of voltage rise is tightly defined. Need to deal with impedance change on start up. The CI have a suitable 3 MW magnetron modulator for short pulses up to 5 micro-seconds and could be used for characterisation
- Establish test station with Television IOT as the drive amplifier Could be used for conditioning SPL and ESS components
- Understand locking characteristics of new magnetron
- Commission advanced modulator with in-pulse current control
- Establish minimum locking power
- Establish two magnetron test stand
- Develop LLRF for simultaneous phase and amplitude control





# Layout using one magnetron per cavity



#### Permits fast phase control but only slow, full range amplitude control



The Royal Academy of Engineering

sLHC

CÉRN



#### Layout using two magnetrons per cavity

sLHC

of Engineering

CÉRN









- 1. Phase of output follows the phase of the input signal
- 2. Phase shift through magnetron depends on difference between input frequency and the magnetrons natural frequency
- 3. Output power has minimal dependence on input signal power
- 4. Phase shift through magnetron depends on input signal power
- 5. There is a time constant associated with the output phase following the input phase





### **CEERI** Collaboration



Dr Shivendra Maurya of the Microwave Tube Division, CEERI, PILANI, India visited Lancaster University from 1<sup>st</sup> August to 31<sup>st</sup> November to start work on the design of a suitable magnetron.

This visit has been funded by the Royal Academy of Engineering.

If there is sufficient interest CEERI will seek funding to manufacture the magnetron. CEERI already manufacture a range of tubes mainly for use in India.



S-band, 3.1 MW Pulse Tunable Magnetron for Accelerator





5 MW (pk), 5kW(avg) S-band Klystron as RF amplifier for injector microtron in Synchrotron Radiation Source

at RRCAT, Indore







Frequency Power Pulse length Max average power Efficiency Magnet External Q Mechanical Tunability Cathode heating 704 MHz
200 kW to 1 MW
5μs to 5 ms (for max power)
100 kW
> 90% above 500 kW
NyFeB (< 0.5 T)</li>
~ 50 (for ease of locking)
~ 5 MHz
indirect and controllable







## **Approximate Calculations**



Using standard theory one can estimate Magnetic field, anode and cathode radii from requirement data (frequency 704 MHz, efficiency >90% and power

| Power output                | W       | 5.26E+05 | 1.00E+06 | Given      |
|-----------------------------|---------|----------|----------|------------|
| Overall efficiency target   |         | 0.9066   | 0.9210   | Assumed    |
| DC power                    | W       | 5.80E+05 | 1.09E+06 | Derived    |
| DC impedance                | Ohms    | 1615     | 1615     | Guessed    |
| Anode voltage               |         | 30611    | 41876    | Derived    |
| Anode current               |         | 18.954   | 25.930   | Derived    |
| Cathode plus circuit losses |         | 4.00%    | 4.00%    | Estimated  |
| electronic efficiency       |         | 94.66%   | 96.10%   | Derived    |
| V anode over V threshold    |         | 1.25     | 1.25     | Assumed    |
| V threshold                 | V       | 24488    | 33501    | Derived    |
| Modified Slater factor      |         | 1.96     | 2        | Assumed    |
| Number of Vanes             |         | 14       | 14       | Assumed    |
| Anode radius                | m       | 0.02400  | 0.02401  | Calculated |
| Cathode radius              | m       | 0.01775  | 0.01774  | Calculated |
| Anode height                | m       | 0.05536  | 0.05536  | Assumed    |
| Cathode current density     | A/m^2   | 3070     | 4202     | Derived    |
| Electric field              | V/m     | 9.79E+06 | 1.34E+07 | Derived    |
| Voltage field product       | kV/mm^2 | 299.6    | 559.8    | Derived    |
| В                           | Τ       | 0.30477  | 0.41331  | Calculated |

$$\eta_{e} \approx \frac{B + 0.5 B_{o}}{B + 1.5 B_{o}}$$

$$B_{o} = 4 \frac{m}{e} \frac{\omega_{rf}}{N} \frac{1}{1 - (r_{c}/r_{a})^{2}}$$

$$W = \frac{2m(\omega_{rf})^{2}}{2m(\omega_{rf})^{2}}$$

$$V_o = \frac{2\pi i}{e} \left( \frac{3\pi}{N} \right) r_a^2$$

 $B \pm 0.5B$ 

$$\frac{V_{th}}{V_o} = 2\frac{B}{B_o} - 1$$

$$\begin{split} \mathbf{S}_{\mathrm{F}} = & \left(\frac{\mathbf{r}_{\mathrm{a}} - \mathbf{r}_{\mathrm{c}}}{\mathbf{r}_{\mathrm{a}} + \mathbf{r}_{\mathrm{c}}}\right) \mathbf{N} \sqrt{1 - \frac{\mathbf{V}}{\mathbf{V}_{\mathrm{c}}}} \\ \mathbf{V}_{\mathrm{c}} = & \mathbf{V}_{\mathrm{o}} \left(\frac{\mathbf{B}}{\mathbf{B}_{\mathrm{o}}}\right)^{2} \end{split}$$



Should be able to use same block for efficient generation at both the 500 KW and 1 MW level

The Royal Academy of Engineering



# Expected operating range







# **VORPAL Predictions at 30 kV**





The Royal Academy of Engineering





### **Moding Issues**





Excitation in the mode at 1060 MHz might be a problem.

We think the coarse mesh or other issues with the simulation might exacerbate the issue.











 $\pi$  mode at 702 MHz





**Efficient Orbits** 



An efficient orbit should have no loop







### **Magnetron Size**





|                       | 704 MHz  |
|-----------------------|----------|
| <b>d</b> g            | ~ 360 mm |
| <b>d</b> <sub>m</sub> | ~ 165 mm |
| h <sub>m</sub>        | ~ 650 mm |
| cost                  | £8000    |

If magnetron design is similar to industrial design with similar tolerances and can be made on same production line then cost may not be much more





# **High Efficiency Klystrons**





Images courtesy of Thales Electron Devices

The Royal Academy of Engineering

 Design of high efficiency klystrons for ESS in collaboration with CLIC

- Similar Klystrons (704.4 MHz, 1.5 MW, 70% efficiency) allow synergetic activities with CLIC.
- Focus on understanding of bunching process and space charge in the output cavity.
- Using evolutionary algorithms to improve optimisation
- New design concepts to achieve optimum beam modulation
- Single and Multiple beams investigated



EUROPEAN SPALLATION SOURCE

