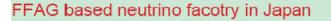

COOLING FOR A NEUTRINO FACTORY

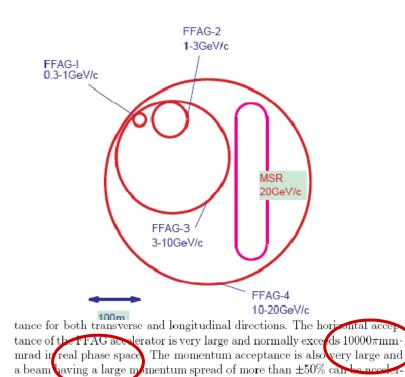
- Stored muon beams \rightarrow clean v_{μ} and v_{e} beams
- Physics requirements:
 - ~10²¹ stored muons / year = 10¹⁴ μ / sec
 - → Detectors of [few x 10kT] x [a few years]
 - There are tradeoffs
 - Stored muons versus
 - Detector mass
 - Running time
 - Minimise cost
- Cooling probably necessary for a NF
- Essential for muon collider

SOME DEFINITIONS

Particle makes betatron oscillations around reference trajectory

 $x = \sqrt{A\beta_t} \sin(\psi(z) + \psi_0)$




A = Amplitude - property of particle $\beta_t = Betatron function - property of lattice$

Acceptance – largest amplitude particle accepted by a machine $\varepsilon = Emittance = rms$ amplitude of particles in a beam $\varepsilon_n = \beta \gamma \varepsilon = (p_z/m_0 c)\varepsilon = Normalised Emittance$ [Length] $(m_0 c \varepsilon_n)^2 = \det(\mathbf{V})$ where $\mathbf{V} = (x, p_x)$ covariance matrix $= \sigma_x^2 \sigma_{p_x}^2 - (\sigma_{xp_x}^2)^2$ **Cooling** = reduction of normalised emittance (by reducing p_t)

- Neutrino factory thinking has evolved
- Initially
 - (US, EU) based on muon collider designs
 - Small acceptances
 - Lots of cooling
 - Expensive
 - Or (Japan) scaling FFAGs
 - Large acceptance
 - No cooling
- More recently (FS2A, ISS)
 - Possibility of *non-scaling* FFAGs for μ acceleration
 - Large acceptance
 - Modest cooling

A NEUTRINO FACTORY WITHOUT COOLING

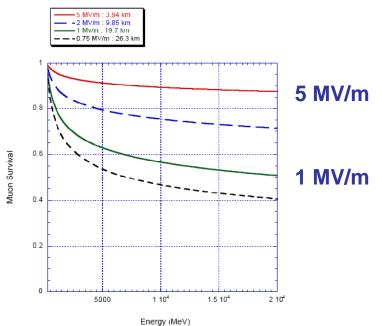
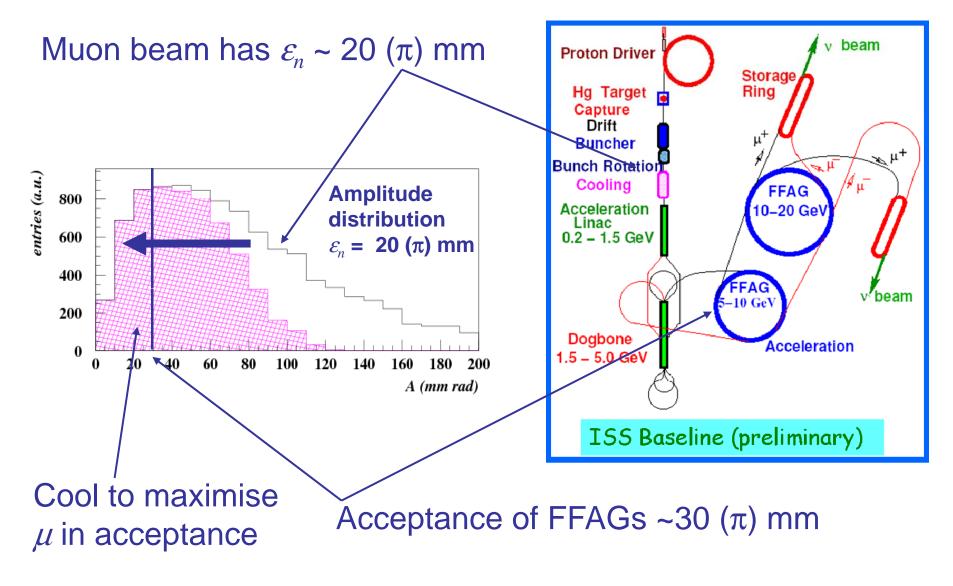
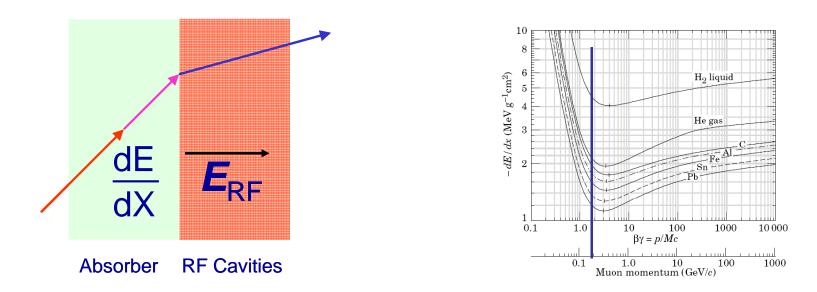
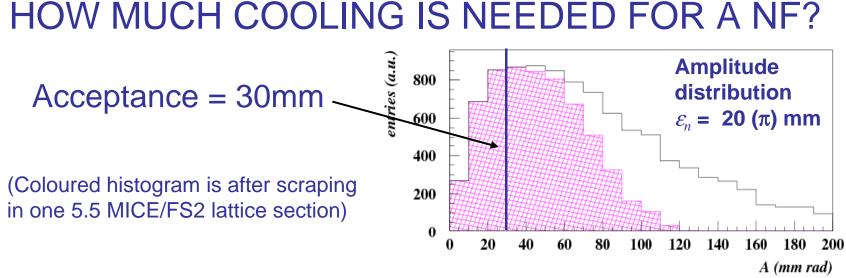



Figure 2.1: Muon survival during acceleration from 300 MeV/c to 20 GeV/c for various accelerating gradients and fractional distances along the machine


Muon survival versus Energy

NufactJ at JPARC (2001) 4 cascaded scaling FFAGs Assumed acceptance of >10(π) mm + acceleration of > 1 MV/m

A NEUTRINO FACTORY WITH COOLING



IONISATION COOLING

- Pass muons through absorbers $\rightarrow dE/dX$ reduces p_t and p_l
- RF replaces $p_l \rightarrow$ beam cooled
- ~ 200 MeV/c is optimum
 - lower momentum

 longitudinal emittance growth (+ feedback)
 longitudinal emittance growth (+ feedback)
- Transverse emittance decreases exponentially

- Nothing like as demanding as $\mu\mu$ collider
- Depends on final acceptance
- Need enough cooling to get useful gain in number of μ
- Tradeoff against decay losses of ~ 1% / 10m @200 MeV/c
- Diminishing returns once most of amplitude distribution inside acceptance
- 2-3 emittance reduction if Acc ~ 30mm, more if smaller
 - Stop and reaccelerate muons ~ once $\rightarrow \varepsilon_n \sim 5-7$ mm

MATERIALS

	$-\varepsilon_n/dE$	ш	$\beta_t \left(0.014 \text{ GeV}\right)^2$
dz	$\overline{\beta^2 E} \setminus \overline{dX} / $	Т	$2\beta^3 Em_{\mu}X_0$

dE/dX reduces \mathcal{E}_n

Scattering increases \mathcal{E}_n

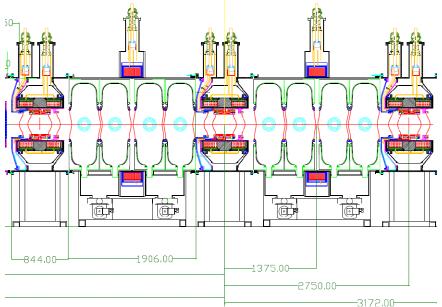
→ low Z absorber material

 \rightarrow tight focus (low β_t) \rightarrow Solenoids

FoM possibly more relevant to HH **Equilibrium emittance**, \mathcal{E}_{n}^{o} , proportional to $(X_{0} < dE/dX >)^{-1}$

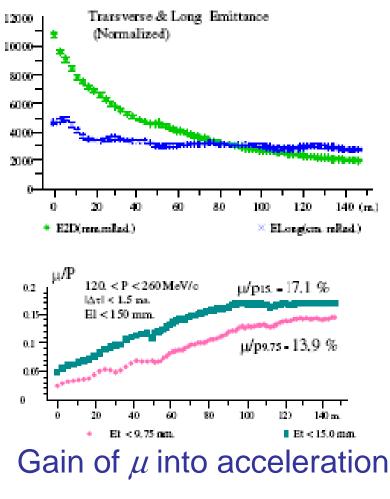
Central phase space density proportional to $(\mathcal{E}_n)^{-2}$

- → Figure of Merit = $(X_0 < dE/dX >)^2$
- \rightarrow H₂ is best (in theory)


Initial cooling ~independent of material if $\mathcal{E}_n >> \mathcal{E}_n^o$

31 October 2007

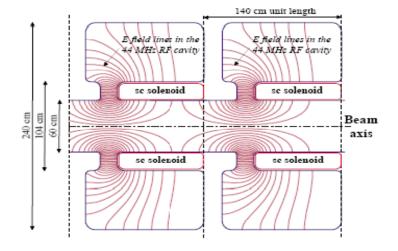
	Z	$X_{\theta} dE/dX$	FoM
. H	1	252.6	1.000
Не	2	182.9	0.524
LiH	'2'	154.4	0.374
Li	3	130.8	0.268
Ве	4	104.1	0.170
С	6	76.0	0.091
AI	13	38.8	0.024


FS2 COOLING CHANNEL

Feasibility Study-II of a Muon-Based Neutrino Source, ed., S. Ozaki, R. Palmer, M. Zisman, and J. Gallardo, BNL-52623 (2001).

(MICE incarnation)

- 5.5m solenoidal lattice, 200 MHz
- ~4T peak fields + flips
- Tapered β from 42 \rightarrow 25 cm
- LH_2 absorbers, $\Delta E \sim 10 \text{ MeV}$


~ 5 for Acc = 9.75mm ~ 3.5 for Acc = 15mm

31 October 2007

CERN SCHEME A.Blondel et al. CERN-2004-002

46m of 44MHz, B = 2.3T 11 x [4 x 1m cavities+24cm LH₂] ΔE = 5.6MeV/cell

112m of 88MHz, B = 5T25 x [8 x 0.5m cavities+40cm LH₂]

ng channel modules, with 44 MHz cavities and supercor

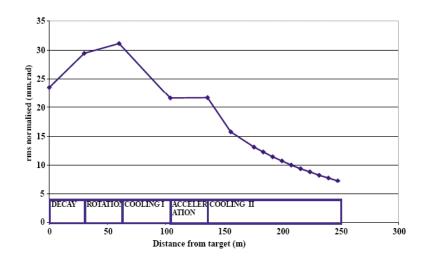
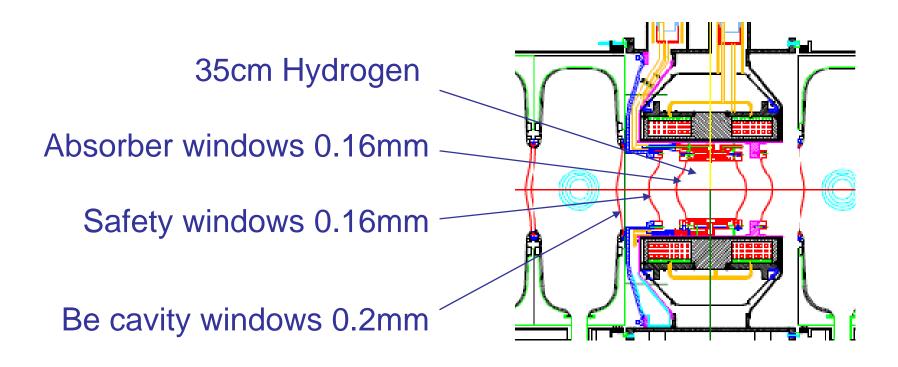
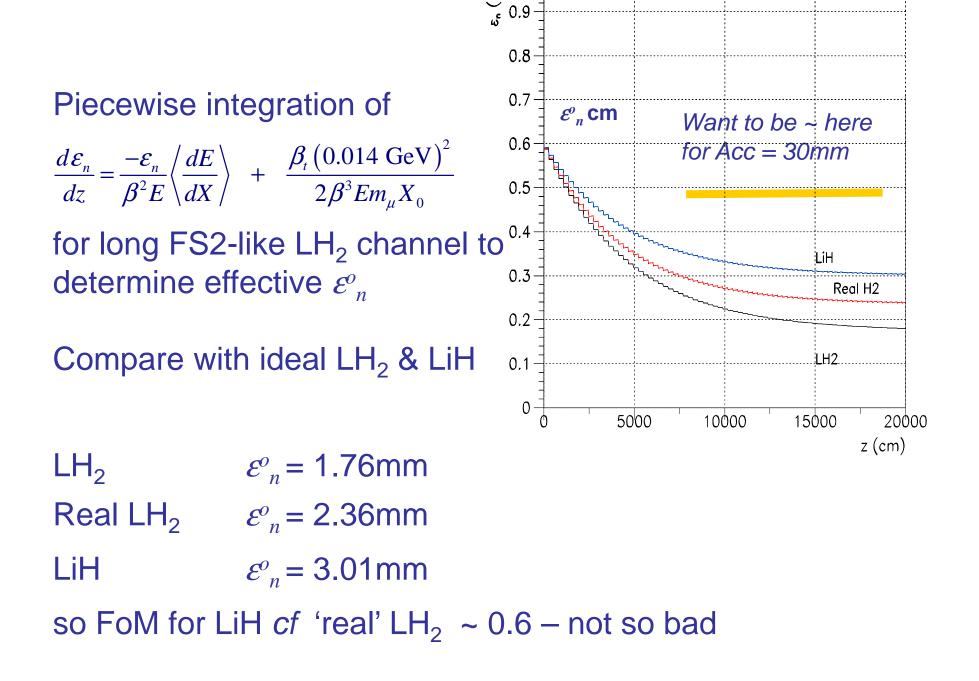


Fig. 6. Evolution of transverse emittance

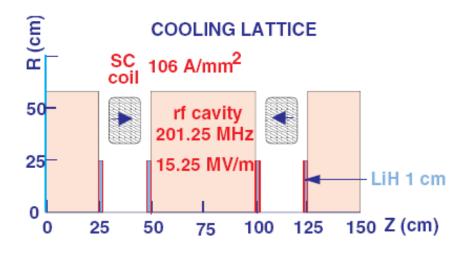

→ 10x gain in N_{μ} into Acc = 15(π) mm

Absorbers / no absorbers

0.07 mu/pi @2GeV

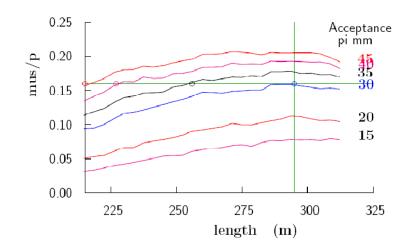

31 October 2007

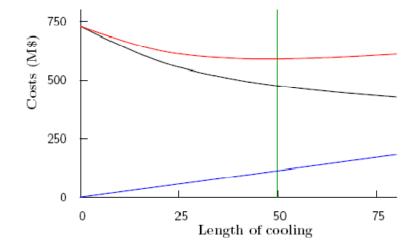
IS REAL HYDROGEN REALLY SO GOOD?



Presence of other material reduces benefit of H₂

Estimate from cooling formula:

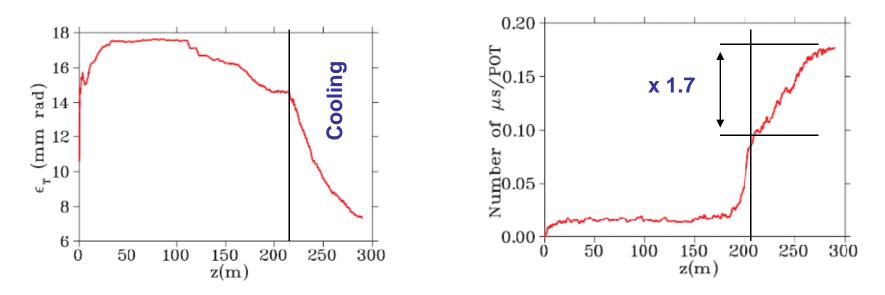

FS2A/B SCHEME (~ISS) J.S. Berg *et al.* PRST-AB 9, 011001 (2006)



- Assume non-scaling FFAGs for μ acceleration
 - Acceptance 30mm (initially more)
- LiH RF cavity windows as absorbers, $\Delta E \sim 3.2 \text{MeV}$
- 2.8T alternating field ($\beta_t \sim 80$ cm)
- Optimisations, to determine amount of cooling
 - including cost

→ Same μ / proton yield as FS2; but simpler

OPTIMISATIONS (R. Palmer et al., various talks)



 μ / p versus cooling length Acceptances of 15 – 45mm Plateaux for ~ 50 – 80m cooling

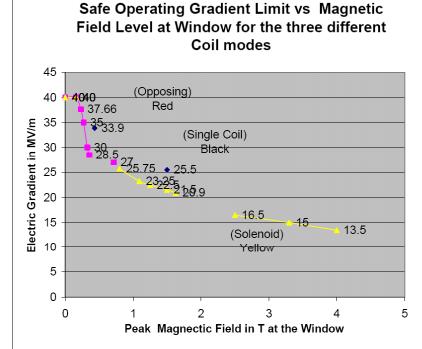
Total **cost** *versus* cooling Fix luminosity Tradeoff **cooling ←→** detector **mass** Shallow minimum in total cost ~50m of cooling with Acc = 30mm

FS2A/B COOLING PERFORMANCE

Cooling is modest – 79m of LiH channel

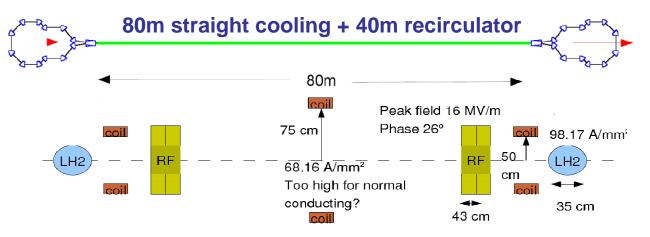
Transverse emittance reduced by $\sim 2 \rightarrow \sim 7$ mm

Gain of ~1.7 in μ/p

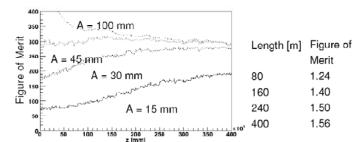

More cooling doesn't help

TECHNICAL CHALLENGES

- Many in common with $\mu\mu$ collider
 - Engineering of high field S/C solenoidal channels
 - Large cold warm forces
 - Especially during quenches (worries some MICE)
 - Removing heat from absorbers
 - 10¹⁴ μ / sec deposit 16 Watts / MeV of ΔE
 - 160 W in 35cm LH₂ absorbers
 - 60 W in LiH absorbers + ~ 200 W RF heating
 - Re-use of LH₂ absorbers in rings, looks difficult
 - High gradient RF cavities in magnetic fields
 - Remains to be seen


RF & MAGNETIC FIELDS

- B parallel to E reduces maximum safe field in cavity
- Expected to be worse at lower frequencies
- Not fully understood
- Awaits test of 200 MHz cavity with MuCOOL coupling coil
- Solutions
 - Fill with high pressure H_2
 - H2 is also absorber
 - but thick windows
 - Separate RF & B



800 MHz cavity in solenoid at Fermilab MTA (D. Li, MICE CM17, 2007)

C. ROGERS' SCHEME (NuFACT07)

- Some separation of **B** and RF
 - (What are fields at cavities?)
- Optimisation for cost
 - re-use absorbers
 - Power?
- Gain of 1.56 in μ/p
 - to be optimised

- Figure of Merit = number of μ in 30 mm transverse acceptance and 150 mm longitudinal acceptance
 - FS2A baseline had a figure of merit of 1.7

CONCLUSIONS

- Some modest cooling probably required for NF
 - Depends strongly on properties of μ accelerators
 - Must demonstrate large acceptance of NS FFAGs
 - EMMA in ~ 2 years
- Technical challenges remain
 - Engineering
 - Absorbers
 - RF & magnetic fields
 - MICE & MuCool addressing these
- Still Cooling ← → Exposure tradeoffs

THE END