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Laser-based particle acceleration i
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Laser-based particle acceleration i
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Acceleration principle
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Acceleration principle
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Acceleration principle

< Cour -opagating lasers —> slow ponderomotive beat wave
™ Frequency variation j variation of beat-wave phase velocity

¢ Particles are trapped and continuously accelerated

Particles Q coherent

o charge: ¢ Q polarized

o mass: M Q nmnrelahwshc" ‘3

Jichirped " | Q chirped
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Acceleration principle

— laser | (chirped)
— laser 2 (fixed frequency)
— beat wave

= ponderomotive beat wave
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Acceleration principle
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Field configuration

EM wave |

initial beat wave velocity = initial ion velomty
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Basic equations

Equation of motion \
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dt 2vMec? Ox i 2)
ot A=28 o1 A= 222 g
o average over fast oscillations 1= o2 2= 312
@ normalization | 7 = kow = kyct ko =k (0,0)
. A Pz 2 A2 72 i 2
7= = 1 A12/2 + As%/2
p Y Y +ps + A1°/24 A /2 +

: - .ﬁtlf-i;g COS (‘I’l — ‘I’g)
Ponderomotive equation

dp AA, 8 ./
R o, — b
di 2y 93 0 (P1—%2) |

Energy equation

d A A i
) © cos (01 —
di 27 ot

®; — @, # constant

Fabio Peano | Abingdon, UK - October 23, 2007 | Topical Workshop



Trapping i

beat-wave trajectory: Z4, (£) such that
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Resonant solutions

Resonant solutions with exact phase-locking are defined by
@ (X ({) 8| - 02 [-X () — | = 4o
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Linearly chirped lasers

Laser | Laser 2
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trapplng r‘egmns get wider trapping regions get narrower

Energy gain can be maximized using
two linearly chirped lasers with o102 < 0
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€ : kinetic energy = 0.00E+00 Mc®
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T kinetic energy = 0.00E+00 Mc”
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Space-charge & pulse-shape effects Il
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Space-charge & pulse-shape effects i

Space charge must not perturb the beat-wave structure

:,g-._;j@;_njs,”trga'int on particle density
np[10%m—?] < Z;1I, /2[102°W /cm?] 12/ 2[102°W /cm?]

ot 2 el

laser intensities has slow transverse ponderomotive force
longitudinal dependence pushes particles aside
0A; /0, negligible for long pulses gain in transverse momentum
but acceleration effective only where .| Ag
A; Ay is high enough | o]~ 2w 1
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Space-charge & pulse-shape effects i
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Constraint on particle density
np[10%em 3] < Z511,/*[10°°W /em?] I, *[10°'W /cm?

=g

Acceleration region limited by spot size and Rayleigh length

Maximum trapped charge
Q[pC] ~ 1614 Zpn,p[10* cm ™ *|wg [m] /Ao [um]
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Scalings and laser requirements

Scaling laws for nonrelativistic regime

(useful particularly for heavy ions)

Scaling laws for relativistic regime
depend on the specific chirp laws

Large variations in velocity require
large excursions in frequency

U

Acceleration could require multi-
stage processes involving different
laser technologies

Acceleration distance vs. time
Az[pm] ~ 622 A521*[10°°W /em?] I, * [102°W fem?| A ?[m] AL P [wm] AT? [ps]

Maximum energy gain vs. laser intensity & time
A€y [MeV] = 0.8 Z; A 1 [10°"W /em?| I [10*"W Jem®| Aoy [pm] gz [wm] AT [ps]

Maximum energy gain vs. laser parameters
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= 8x 1077 Z3AS361[1)E:(J) 2 [um] Z; [pm]

Frequency excursion vs. velocity
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Particle-in-cell simulations: osiris 2.0

0siris ! osirs framework

v2.0

INSTITUTO
SUPERIOR
TECNICO

Massively Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
Visualization and Data Analysis Infrastructure

Developed by the osiris.consortium
=5 UCLA+ 5] +USC

New Features in v2.0

Bessel Beams

Binary Collision Module

Tunnel (ADK) and Impact lonization
Dynamic Load Balancing

Parallel I/O
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Integration of equations of motion:
moving particles

FP—zn-uﬂ—mrllv.:IJI

Interpolation: Deposition:
evaluating force on particles calculating current on grid

(E,B); — Fy

i

INSTITUTO
SUPER|OR
TECNICO

Integration of field equations:
updating fields
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I; = 1.3 x 10! W/cm®

peak intensities:
I, = 8.5 x 10 W/cm?
chirp coefficient: o = -2 x 107° kj
ref. wavelength:  \; = 820 nm
*p, phase space
Time= 008[ps]
LJNLINR I LN N L L L L O L B 10'

proton density: n; =5 x 10'® cm ™3
slab thickness:
pulse duration: 4.2 ps
spot size:
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peak intensities:

I, = 8.5 x 10 W/cm?
chirp coefficient: o = -2 x 107° kj
ref. wavelength: Ay = 820 nm
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Proton beam features after 6 ps

# monoenergetic beam @ 12 MeV with 7.5% energy spread

¢ bunch is 60 #m and 20 ym wide

¢ transverse momentum spread < 0.01 Mc

¥ 4.2% of charge in focal region trapped (~8 pC in 3D)

|
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Conclusions & perspectives

[4 Variable-frequency lasers allow for direct acceleration of charged particles @
nonrelativistic intensities: particularly suitable for ions

[ Physical mechanism is robust: works with any source of charged particles
(e.g., external beams, tenuous plasmas)

[ Production of monoenergetic charged-particle beams achievable, energy
distribution tunable by regulating the laser chirp laws

[4 Method works in a test-particle regime: excellent controllability, but very
demanding in terms of required laser energy

Application to muon acceleration
"’T’Eﬁhﬁlque could be employed to extract
‘muons from background plasmas and

Open problems

& Transverse focusing is needed: could be
provided by suitably shaped lasers (e.g., using

annular transverse profiles) Z';a;t-_:i:E]E]:atE them to relativistic energies

¢ Diffraction limits the acceleration distance: & High energy gain in a single stage is extremely
wide-spot size or guiding may be necessary to challenging from the technological point of
reach high energy gain view: multi-stage approach is needed
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