

Neutrinos and Supernovae

Bob Bingham

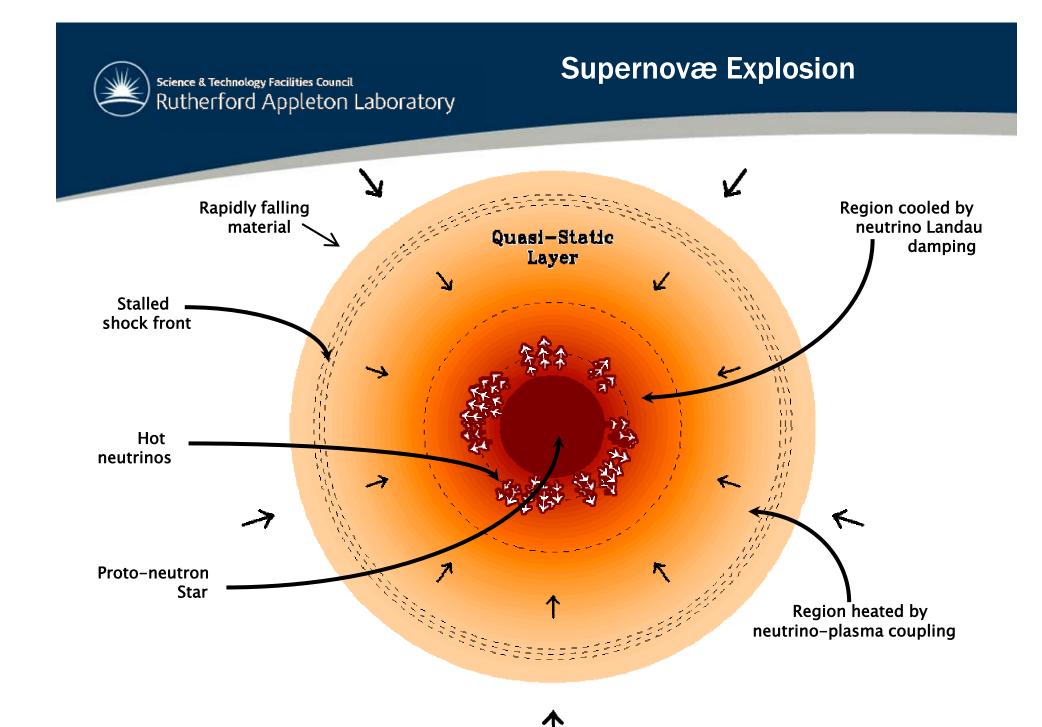
STFC – Centre for Fundamental Physics (CfFP) Rutherford Appleton Laboratory. SUPA– University of Strathclyde.

Motivation

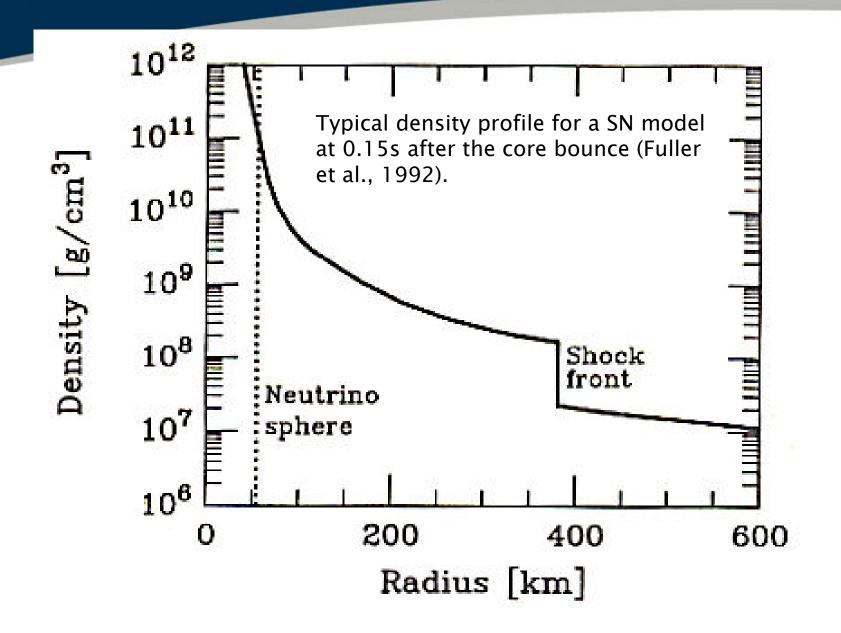
Neutrinos are the most enigmatic particles in the Universe

- Associated with some of the long standing problems in astrophysics
 - Solar neutrino deficit Gamma ray bursters (GRBs) Formation of structure in the Universe Supernovae II (SNe II) Stellar/Neutron Star core cooling Dark Matter/Dark Energy
- Intensities in excess of 10³⁰ W/cm² and luminosities up to 10⁵³ erg/s

Intense fluxes of neutrinos in Supernovae **Neutrino dynamics in dense plasmas (making the** bridge with HEP) **Plasma Instabilities driven by neutrinos** Supernovae plasma heating: shock revival **Neutrino mode conversion (Neutrino oscillations) Neutrino Landau damping** Neutron star cooling Solar neutrino deficit Gamma-ray bursters: open questions **Conclusions**



Typical Density Profile



Length scales

Plasma scale

 $\lambda_{\rm D}, \lambda_{\rm p}, r_{\rm L}$

← Compton Scale HEP

 $\begin{array}{l} \text{Hydro Scale} \rightarrow \\ \text{Shocks} \end{array}$

Can intense neutrino winds drive collective and kinetic mechanisms at the *plasma scale* ?

Bingham, Bethe, Dawson, Su (1994)

Supernova Explosion

A supernova releases 5 ×10⁵³ erg

(gravitational binding energy of the original star)

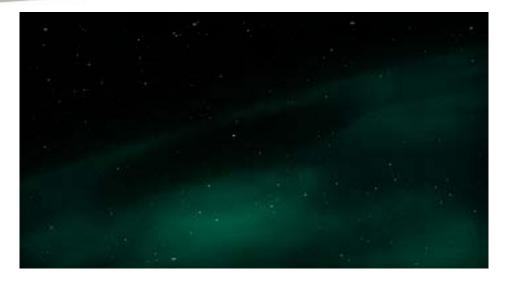
• neutrinos 99 % •

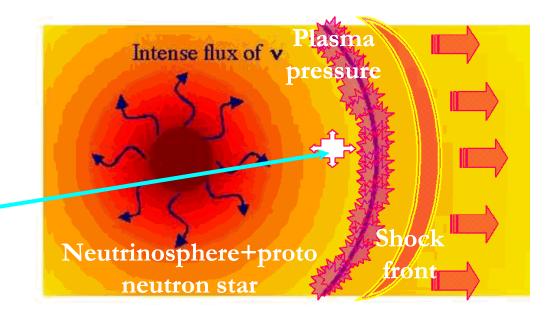
• kinetic energy+light ~ 10^{51} erg •

How to turn an implosion into an explosion?

> ⇒ Neutrino-plasma scattering instabilities in dense plasmas

> > Neutrino-plasma heating





The interaction can be easily represented by neutrino refractive index.

The dispersion relation: $(E_v - V)^2 - p_v^2 c^2 - m_v^2 c^4 = 0$ (Bethe, 1986)

Neutrino Refractive Index

E is the neutrino energy, p the momentum, m_v the neutrino mass.

The potential energy

$$V = \sqrt{2}G_F n_e$$

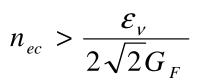
 G_F is the Fermi coupling constant, n_e the electron density

 \Rightarrow Refractive index

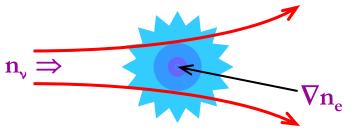
$$N_{\nu} = \left(\frac{ck_{\nu}}{\omega_{\nu}}\right)^2 = \left(\frac{cp_{\nu}}{E_{\nu}}\right)^2$$

$$N_{\nu} \cong 1 - \frac{2\sqrt{2G_F}}{\hbar k_{\nu}c} n_e$$

Note: cut-off density ϵ_v neutrino energy



Electron neutrinos are refracted away from regions of dense plasma similar to photons.



Neutrino Ponderomotive Force

For intense neutrino beams, we can introduce the concept of the Ponderomotive force to describe the coupling to the plasma. This can then be obtained from the 2nd order term in the refractive index.

<u>Definition</u> $F_{POND} = \frac{N-1}{2} \nabla \xi$ [Landau & Lifshitz, 1960]

where ξ is the energy density of the neutrino beam.

$$N = 1 - \frac{2\sqrt{2}G_F}{\varepsilon_v} n_e \qquad \Rightarrow \qquad F_{\text{Pond}} = -\frac{\sqrt{2}G_F n_e}{\varepsilon_v} \nabla \xi$$

 n_{v} is the neutrino number density.

$$\mathbf{F}_{\text{Pond}} \equiv -\sqrt{2}G_F n_e \nabla n_v$$

Bingham et al., 1997.

Dynamics governed by Hamiltonian (Bethe, '86):

$$H_{eff} = \sqrt{\mathbf{p}_{v}^{2}c^{2} + m_{v}^{2}c^{4}} + 2G_{F}n_{e}(\mathbf{r},t)$$

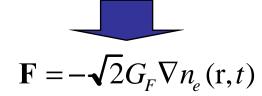
 G_F - Fermi constant n_e - electron density

$$\mathbf{F}_{pond} = -\sqrt{2}G_F \nabla n_v(\mathbf{r},t)$$

Force on a single electron due to neutrino distribution

Ponderomotive force^{*} due to neutrinos pushes electrons to regions of lower neutrino density

* ponderomotive force derived from semi-classical (L.O.Silva et al, '98) or quantum formalism (Semikoz, '87) ¶ Effective potential due to weakinteraction with background electrons¶ Repulsive potential



Force on a single neutrino due to electron density modulations

Neutrinos bunch in regions of lower electron density

Neutrino Ponderomotive Force (2)

Force on one electron due to electron neutrino collisions f_{coll}

$$f_{coll} = \boldsymbol{\sigma}_{v_e} \boldsymbol{\xi} \qquad \boldsymbol{\sigma}_{v_e} = \left(\frac{G_F k_B T_e}{2\pi\hbar^2 c^2}\right)^2 \quad \overset{\boldsymbol{\sigma}_{v_e}}{\text{elements}}$$

 σ_{ve} is the neutrinoelectron cross-section

Total collisional force on all electrons is

$$F_{\text{coll}} = n_e f_{coll} = n_e \sigma_{v_e} \xi$$
$$\frac{F_{\text{Pond}}}{F_{\text{coll}}} = \frac{\sqrt{2\pi \hbar^3 c^3}}{G_F k_B^2 T^2} \frac{|k_{Mod}|}{k_v}$$

 $|\mathbf{k}_{mod}|$ is the modulation wavenumber.

For a 0.5 MeV plasma
$$\frac{F_{Pond}}{F_{coll}} \approx 10^{10}$$

 $\sigma_{ve} \Rightarrow \ collisional \ mean \ free \ path \ of \ 10^{16} \ cm.$

Supernova II Physical Parameters

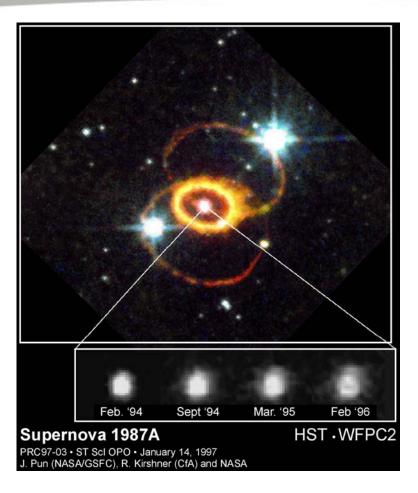
To form a neutron star 3 ×10⁵³ erg must be released (gravitational binding energy of the original star) • light+kinetic energy ~ 10⁵¹ erg • • gravitational radiation < 1% • • neutrinos 99 % •

¶ Electron density @ 100-300 km: $n_{e0} \sim 10^{29} - 10^{32} \text{ cm}^{-3}$ ¶ Electron temperature @ 100-300 km: $T_e \sim 0.1 - 0.5 \text{ MeV}$

- $\P\,\nu_e$ luminosity @ neutrinosphere~ 10^{52} $5{\times}10^{53}\,erg/s$
- ¶ v_e intensity @ 100-300 Km ~ 10²⁹ 10³⁰ W/cm²

¶ Duration of intense v_e burst ~ 5 ms (resulting from p+e \rightarrow n+ v_e)

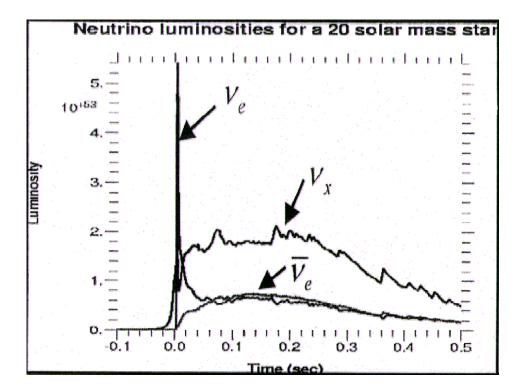
¶ Duration of v emission of all flavors ~ 1 - 10 s



The shock exits the surface of the proto-neutron star and begins to stall approximately 100 milliseconds after the bounce.

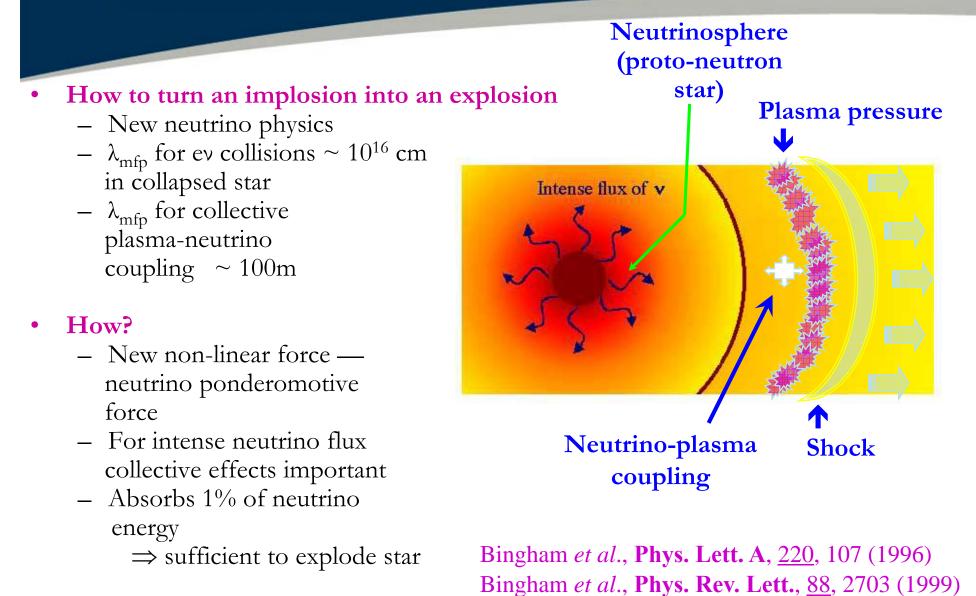
The initial electron neutrino pulse of 5x10⁵³ ergs/second is followed by an "accretion" pulse of all flavours of neutrinos.

This accretion pulse of neutrinos deposits energy behind the stalled shock,



increasing the matter pressure sufficiently to drive the shock completely through the mantle of the star.

Supernova Explosion



Two stream instability Neutrinos driving electron plasma waves vø ~ c Anomalous heating in SNe II

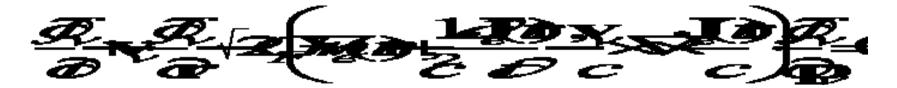
Collisionless damping of electron plasma waves Neutrino Landau damping Anomalous cooling of neutron stars

Electroweak Weibel instability Generation of quasi-static B field Primordial B and structure in early Universe

Kinetic equation for neutrinos

Neutrino kinetics in a dense plasma

(describing neutrino number density conservation / collisionless neutrinos)



Kinetic equation for electrons driven by neutrino pond. force (collisionless plasma)

Maxwell's Equations

(Silva et al, ApJ SS 1999)

Two stream instability driven by a neutrino beam

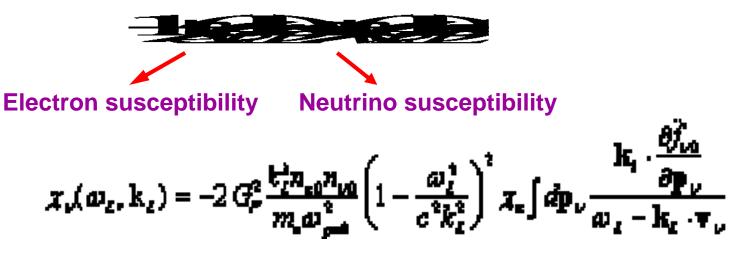
Usual perturbation theory over kinetic equations + Poisson's equation

$$n_{u} = n_{u} + n_{u} \qquad f_{c} = f_{c0}(\mathbf{p}_{c}) + f_{c1}$$

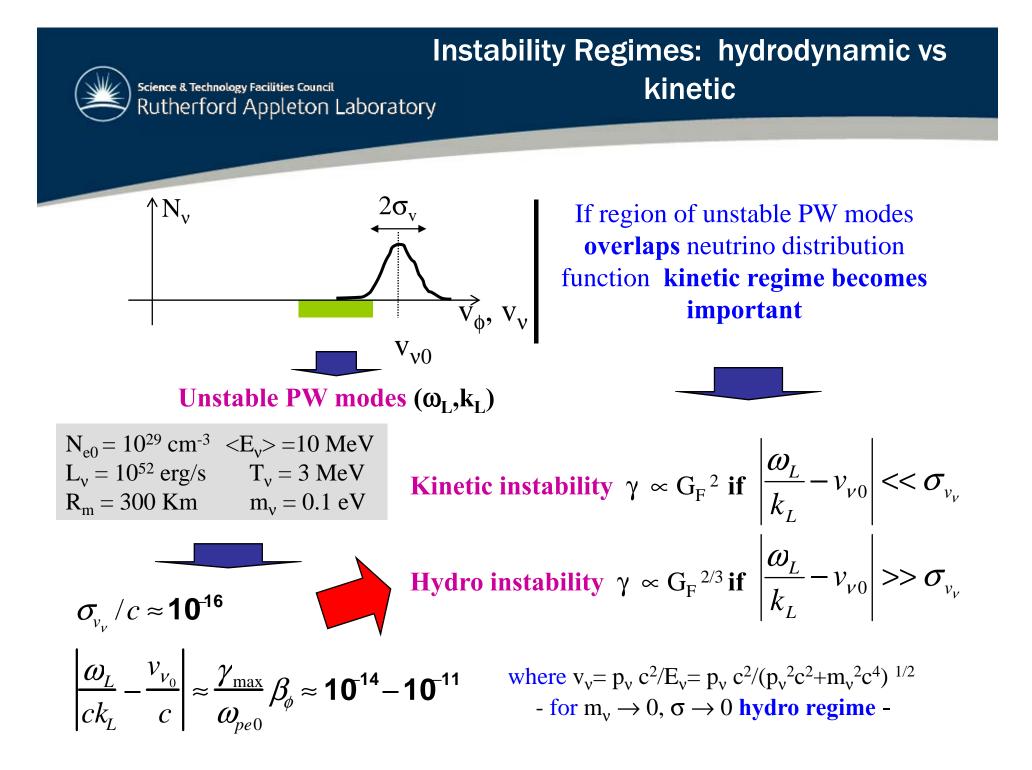
$$\mathbf{v}_{u} = \mathbf{v}_{1} \qquad f_{c} = f_{c0}(\mathbf{p}_{v}) + f_{c1}$$

$$\mathbf{v}_{v} = \mathbf{v}_{uk} + \mathbf{v}_{v1} \qquad \mathbf{E} = \mathbf{E}_{1}$$

Dispersion relation for electrostatic plasma waves



(Silva et al, PRL 1999)



Estimates of the Instability Growth Rate

 $n_{e0} = 10^{29} \text{ cm}^{-3}$ $L_v = 10^{52} \text{ erg/s}$ $R_m = 300 \text{ Km}$ $< E_v > = 10 \text{ MeV}$

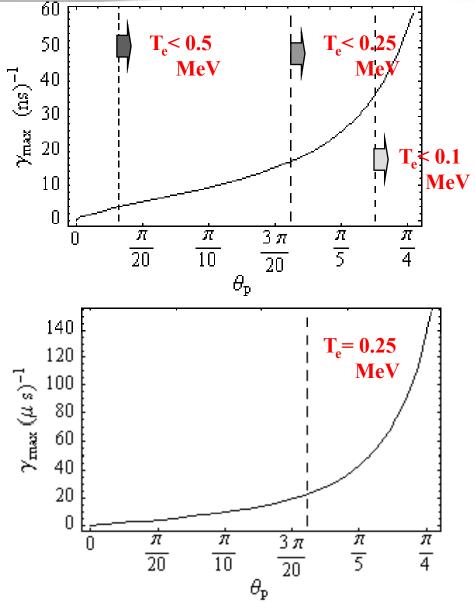
Growth distance ~ 1 m (without collisions)

Growth distance ~ 300 m (with collisions)

- 6 km for 20 e-foldings -Mean free path for neutrino electron single scattering ~ 10¹¹ km

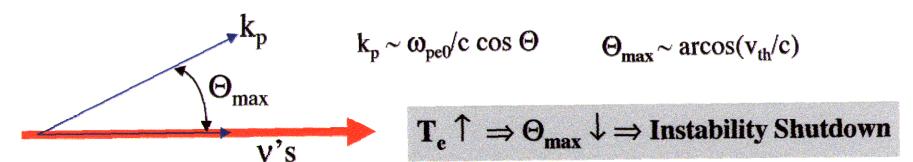
Single v-electron scattering $\propto G_F^{-2}$

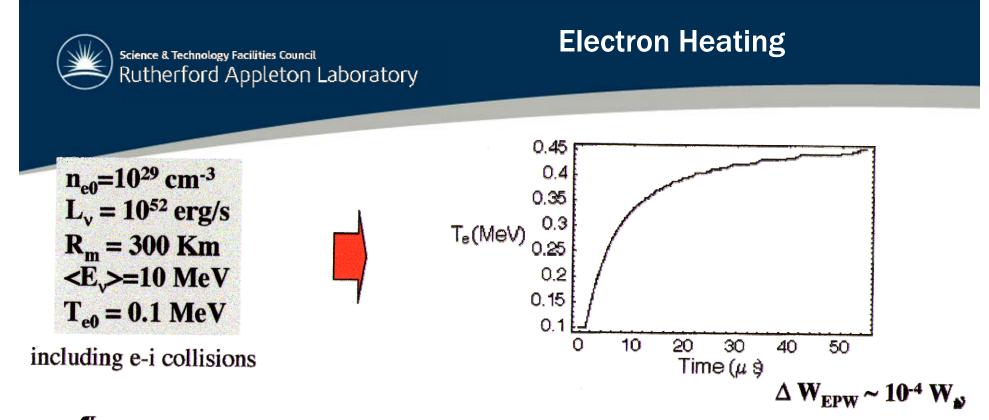
Collective mechanism much stronger than single particle processes



Saturation Mechanism

Neutrino streaming instability saturates by electron Landau damping





J Preliminary results indicate strong heating up to 0.5 MeV;

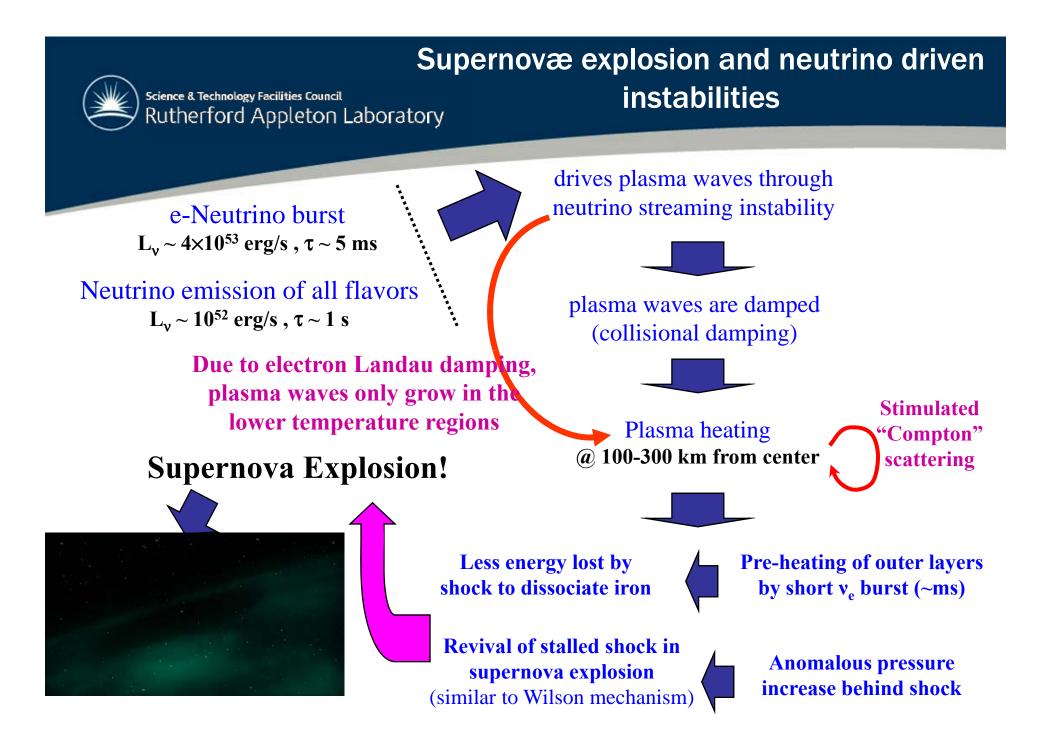
J Further analysis is necessary to include relativistic corrections on electron

Landau damping - present model overestimates eLD;

Initial v_e burst (~ ms) can heat the plasma efficiently;

I Detailed quasi-linear theory for v's and e's will give signatures of v-driven instabilities and more accurate results \rightarrow information to be included in supernovae code

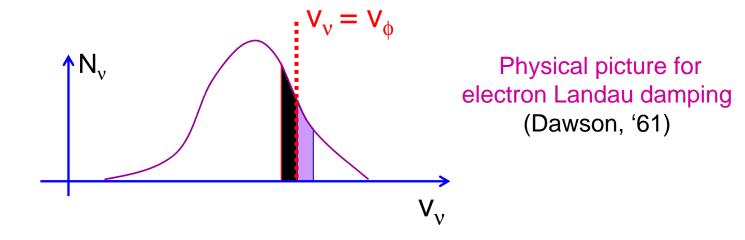
J Stimulated "Compton" scattering must also be considered



Neutrino Landau Damping I

What if the source of free energy is in the plasma? Thermal spectrum of neutrinos interacting with turbulent plasma

Collisionless damping of EPWs by neutrinos moving resonantly with EPWs



General dispersion relation describes not only the neutrino fluid instability but also the neutrino kinetic instability

(Silva et al, PLA 2000)

Neutrino surfing electron plasma waves Science & Technology Facilities Council Rutherford Appleton Laboratory

γ_{Φ} $\varepsilon = \delta n_e / n_0$ %**≠10** $\epsilon = 10^2$ $\eta_0 = 10^2 c \vec{m}$ v bunching $L_{p} = \lambda p_{p}^{2} \approx 3 \times 10^{2} \text{ on}$ $dE/d \approx 8 \sqrt{2 \text{ pn}} (\lambda p_{p}^{2}) \approx 200 \text{ eV on}$

Equivalent to physical picture for RFS of photons (Mori, '98)

Neutrino Landau damping II

Neutrino Landau damping reflects contribution from the pole in neutrino susceptibility

$$\chi_{\nu}(\omega_{I},\mathbf{k}_{L}) \propto \int d\mathbf{p}_{\nu} \frac{\mathbf{k}_{L} \cdot \left(\hat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu}\right)}{\omega_{J} - \mathbf{k}_{J} \cdot \mathbf{v}_{\mu}} \longrightarrow \int d\mathbf{p} \left[\mathbf{p} \left\{ \begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{k}_{\nu} \cdot \mathbf{v}_{\mu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\mathbf{p} \left\{ \begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{k}_{\nu} \cdot \mathbf{v}_{\mu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\mathbf{p} \left\{ \begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{k}_{\nu} \cdot \mathbf{v}_{\mu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\mathbf{p} \left\{ \begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}{c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}[c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[\begin{array}[c} \widehat{\theta}_{\nu a}^{\dagger} / \partial \mathbf{p}_{\nu} \\ \widehat{\theta}_{\nu a}^{\dagger} - \mathbf{p}_{\nu} \end{array} \right] \xrightarrow{\mathbf{p}} \int d\mathbf{p} \left[\left[\left[$$

EPW wavevector $\mathbf{k}_{L} = \mathbf{k}_{L\parallel}$ defines parallel direction neutrino momentum $\mathbf{p}_{n} = \mathbf{p}_{v\parallel} + \mathbf{p}_{v\perp}$ arbitrary neutrino distribution function f_{v0} Landau's prescription in the evaluation of χ_{v}

For a Fermi-Dirac neutrino distribution

$$\gamma_{\text{Londow}} \approx -\frac{k_{\ell}c}{2} \pi \frac{\mathsf{G}_{F}^{2} n_{e0} n_{v0}}{m_{e}c^{2} k_{s} T_{v}} \left(1 - \frac{\omega_{\ell}^{2}}{c^{2} k_{\ell}^{2}}\right)^{2} \frac{\operatorname{Li}_{2}(-\exp E_{F}/T_{v})}{\operatorname{Li}_{3}(-\exp E_{F}/T_{v})}$$

Neutrino play a critical role in Type II Supernovæ

- Neutrino spectra and time history of the fluxes probe details of the core collapse dynamics and evolution.
- Neutrinos provide heating for "delayed" explosion mechanism.
- Sufficiently detailed and accurate simulations provide information on convection models and neutrino mass and oscillations.