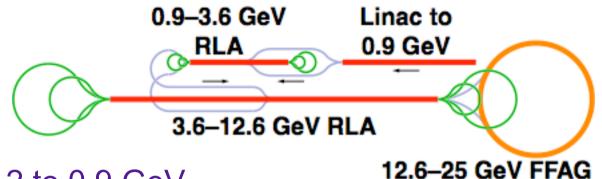
Rapid Accelerations: techniques

Shinji Machida ASTeC/STFC/RAL 23 October, 2007

http://www.astec.ac.uk/intbeams/users

/machida/proc/topical2007/machida_20071023.pdf & ppt

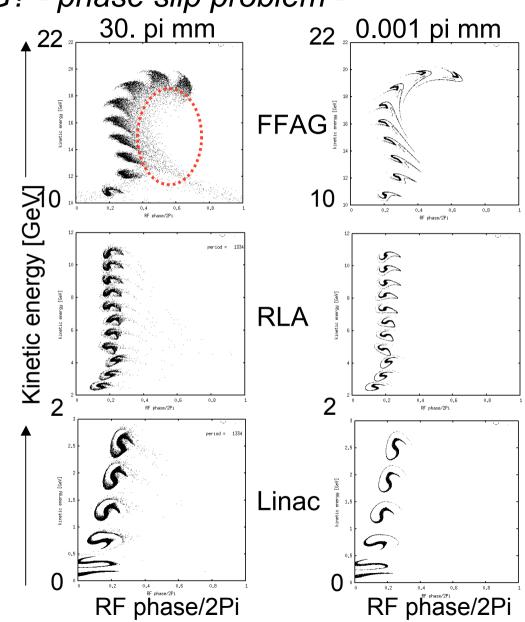
Contents


- Muon accelerators in a neutrino factory (8 slides)
- Muon accelerators in a muon collider (8)
- Summary (2)

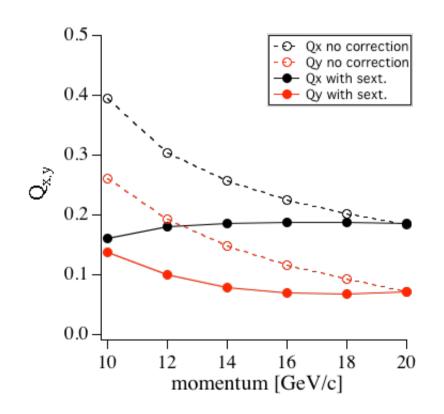
Muon accelerators in a neutrino factory

Muon acceleration in a neutrino factory (1) requirements of muon accelerator

- Quick acceleration
 - Short lifetime of 2.2 μ s.
 - A few MV/m as an average energy gain.
- Large acceptance
 - Muon is a tertiary particle.
 - Muon emittance is a few tens of thousand π mm mrad (or 30 π mm).
- Cost consideration
 - Accelerators are the most costly part of a neutrino factory.
 - In particular, efficient use of rf system is essential.
- Acceleration of bunch train with 201 MHz structure
 - 80 bunches after phase rotation and cooling.
 - That uniquely determines the choice of rf frequency.


Muon accelerators in a neutrino factory (2) proposed complex with ISS

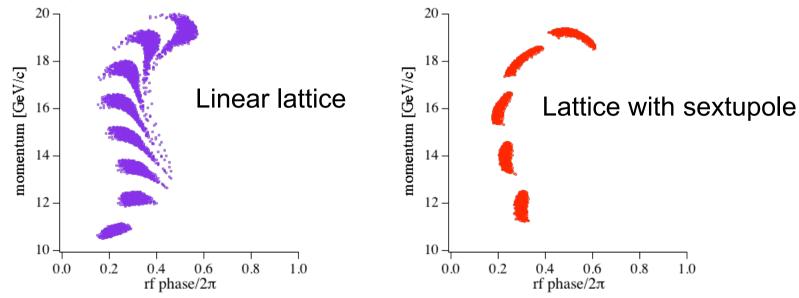
- Linac: 0.2 to 0.9 GeV
 - + Simple and straightforward.
 - Costly.
 - Large amplitude particles lag behind the correct phase (phase slip).
- Recirculating Linac (RLA): 0.9 to 12.6 GeV
 - + Cost effective way of using linac. Arc can compensate the phase slip.
 - Is switchyard problem solved?
- Linear nonscaling FFAG: 12.5 to 25 (or 50 GeV)
 - + Lower cost.
 - The phase slip problem.
 - "Resonance" crossing.


Muon accelerators in a neutrino factory (3) RLA or FFAG? - phase slip problem -

- "End to end simulation" shows deterioration of longitudinal emittance in a nonscaling FFAG.
- The phase slip problem determines
 - Transition energy between RLA and FFAG.
 - whether a cascade of FFAG is feasible.

Muon accelerators in a neutrino factory (4) chromaticity correction

- Chromaticity correction eliminates the problem (Berg).
 - Reduction of dynamic aperture becomes a concern.
- Make a lattice with chromaticity correction.
 - 30 π mm acceptance is needed.

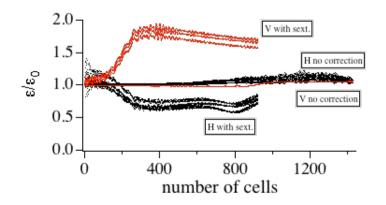

Dynamic aperture of 100 turns

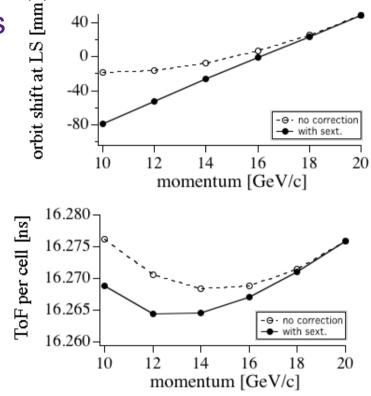
Momentum [GeV/c]	Dynamic aperture [πmm]
10	18
12	9
14	6
16	9
18	15
20	18

7

Muon accelerators in a neutrino factory (5) simulation results

- Sextupole mitigates the phase slip problem.
- Muon beam with 30 π mm emittance is accelerated without beam loss.
 - Even though dynamic aperture of 100 turns does not give acceptance of 30 π mm.

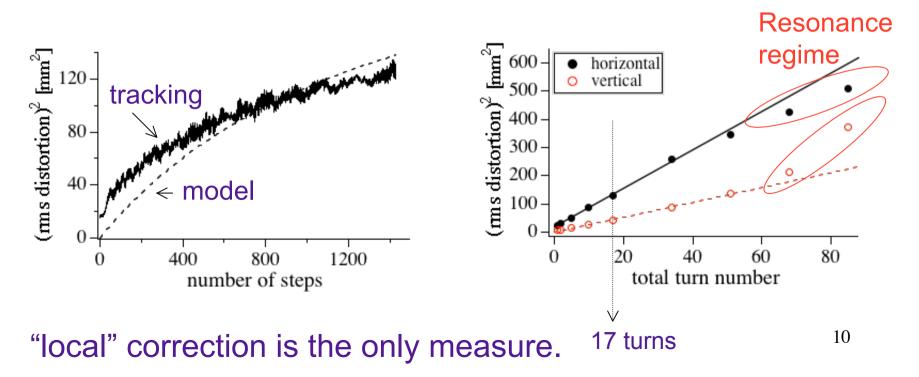



• EMMA can simulate these results?

Muon accelerators in a neutrino factory (6) price we have to pay

- Orbit shift becomes as twice as much.
 - Need a bigger aperture magnet.

- Time of flight range increases 50%.
 - Need a higher voltage.



- Exchange of transverse emittance.
 - Can be cured by tune choice?

Muon accelerators in a neutrino factory (7) *"resonance" crossing*

- rms orbit distortion due to alignment errors agrees with random walk model.
- Distortion for different acceleration rate.
 - Circles are simulation results.
 - Lines are random walk model.

Muon accelerators in a neutrino factory (8) summary

- ISS design choice is pretty much optimized *except*
- Transition energy between RLA and FFAG is still debatable.
- Phase slip problem can be corrected.
 - Chromaticity correction is a realistic solution.
 - The idea of a few FFAG cascade is feasible.
- "Resonance" is not correct physics. However, it becomes a concern if the tune changes 5 times slower.

Muon accelerators in a muon collider

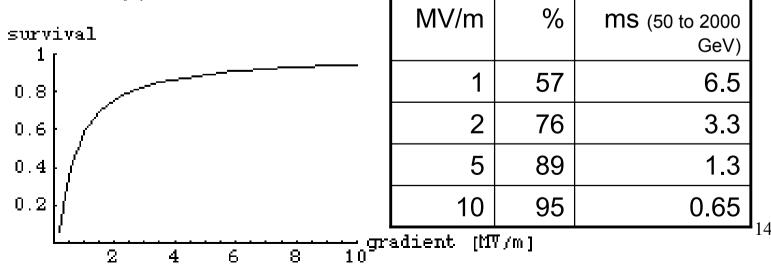
Muon acceleration in a muon collider (1) requirements of muon accelerator

- Quick acceleration (high gradient acceleration)
 - Life time is boosted: becomes an order of ms.
 - Required gradient is the same: \geq MV/m.

• Large acceptance

- Muon is a tertiary particle.
- Beam is cooled and emittance is small: 0.025 π mm (30 π mm in N.F.)
- Cost consideration (always an issue)
 - Accelerators are the most costly part of a neutrino factory.
 - In particular, efficient use of rf system is essential.
- Acceleration of bunch train with 201 MHz structure
 - Single bunch (Palmer).
 - No constraint on rf frequency.

Muon acceleration in a muon collider (2) muon decay


Muon survival

$$\frac{n_f}{n_i} = \left(\frac{\gamma_f}{\gamma_i}\right)^{-\frac{m_\mu c^2}{c\tau g}}$$

– Where au is muon life time at rest, $extsf{8}$ is field gradient.

- Once γ_f / γ_i is fixed, required field gradient is independent of γ .

• When $\gamma_f / \gamma_i = 40$ (50 to 2000 GeV)

Muon acceleration in a muon collider (3) ring option

- Another structure(s) is needed to accelerate 40 times more.
 pf/pi = 40. (50 GeV to 2000 GeV)
- Linac or RLA is a straightforward option. However, ring accelerators can be a possible alternative.
- At least, two stages are necessary,

Muon acceleration in a muon collider (4) possible choice of medium energy muon accelerator

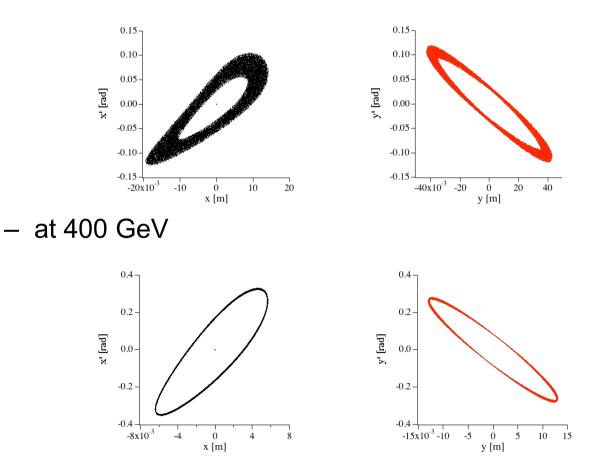
• 50 to 400 GeV

MV/m	%	ms
1	73	1.2
2	85	0.6

- Linear nonscaling FFAGs
 - Limit of *pf/pi*=2 means three rings.
- Pulsed magnet synchrotron
 - Less than 1 ms acceleration time may be still too fast.
- Scaling or nonlinear nonscaling (chromaticity corrected) FFAG
 - Wider range of *pf/pi* is possible.
 - No constraint on the rf frequency, can be low such as a few MHz.

Muon acceleration in a muon collider (5) FFAG as MEMA example

• Machine parameters of a scaling FFAG


energy	50 to 400 GeV
lattice	doublet
radius	1500 m
# of cell	375
QF/QD	7.5 / 7.5 m
short straight	0.5 m
long straight	9.6 m
<i>k</i> -value	6238
orbit shift	0.5 m
cell tune	0.378 (H) /
	0.073 (V)
Bfield at orbit	+9.1 T / -6.8 T

• Time scale and rf of a scaling FFAG

revolution time	31.4 <i>μ</i> s
# of turn with 1 MV/m	38
cycle time	1.2 ms
gradient at cavity	4 MV/m
frequency swing <i>df/f</i>	+-1.67 10-4

Muon acceleration in a muon collider (6) acceptance of scaling FFAG

Dynamic aperture (100 turns) is more than 10 π mm.
 – at 50 GeV

Muon acceleration in a muon collider (7) possible choice of high energy muon accelerator

• 400 to 2000 GeV

MV/m	%	ms
1	78	5.3
2	89	2.7

- Linear nonscaling FFAG
 - Limit of *pf/pi*=2 means at least 2 or 3 rings.
 - Make sure it is not a "resonance regime".
- Pulsed magnet synchrotron
 - A few ms acceleration time.
- Scaling or nonlinear nonscaling (chromaticity corrected) FFAG
 - Wider range of *pf/pi*
 - No constraint on the rf frequency, can be low such as MHz. 19

Muon acceleration in a muon collider (8) summary

- Some requirements are the same, and some are different.
 - Necessary rf field gradient is the same (tha same sort of R&D).
 - Acceptance is much smaller: similar to an ordinary proton one.
 - No constraint on rf frequency (Palmer's high emittance option).
- Scaling or nonlinear nonscaling FFAG for medium and high accelerator.
 - Large momentum range (*pf/pi*) is one of advantages.
- Pulsed magnet synchrotron.
 - Possibly for high energy accelerator.

Summary

- Accelerator chain for neutrino factory is pretty much optimized.
- Nonscaling FFAG with chromaticity correction mitigates the phase slip problem.
- Scaling or nonlinear nonscaling FFAG can be an alternative option to RLA for muon collider.
- Pulsed magnet synchrotron can be an option of High energy muon accelerator (>400 GeV).

Democratic choice?

- Linac:
- Recirculating Linac (RLA):
- Linear nonscaling FFAG:
- Scaling FFAG:
- Pulsed magnet synchrotron:

0.2 to 0.9 GeV

0.9 to 12.6 GeV

12.5 to 50 GeV

- 50 to 400 GeV
- 400 to 2000 GeV

Maybe a good starting point because we cannot think of more variety.