Design Principles for Muon Colliders

J. Scott Berg Brookhaven National Laboratory Topical Meeting on the Neutrino Factory and the Muon Collider 22 October 2007

Muon Collider Goals

- OReach high energy
- Achieve high luminosity
- Avoid excessive neutrino radiation
 - Neutrinos create showers in massive objects near site
 - Highly concentrated neutrino beam
 Increases rapidly with energy

- Beam isn't stored long (decays)
 - Muon production rate determines luminosity
 Similar to linear collider
- Beams can collide multiple times
 - Not arbitrarily large number (decays)
 Here we beat linear colliders
 - Advantages to throwing out your beam
- Long-distance neutrino radiation

Muon Collider Challenges

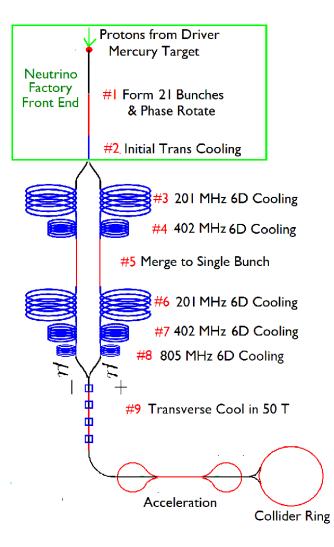
- Muons produced with large emittances
 Requires massive amounts of cooling
 Muons decay
 - Preserving beam all the way to collider
 Cooling and acceleration must be extremely rapid

Muon Collider Components

- High-power proton driver
- Target
- Make the beam sane
- Capture, phase rotation, bunching
 Could be something else...
 Cooling

Muon Collider Components

Rebunching: several to one
During cooling
During acceleration
Not at all...
Acceleration


○ Collider ring

Muon Collider System

Luminosity Luminosity for Decaying Beams

 \odot Round Gaussian beams collide, all μ s decay

$$\mathcal{L} = \frac{\gamma \tau_{\mu}}{2T_{\text{rev}}} \frac{N^2 n_B f_P}{4\pi\sigma^2} = \frac{\tau_{\mu} e B_{\text{avg}} N^2 n_B f_P}{4\pi\sigma^2}$$

 $\circ N$: particles per bunch $\circ \gamma$: energy/(rest mass)

- $\circ \tau_{\mu}$: muon rest lifetime
- $\circ T_{rev}$: revolution time
- $\circ f_P$: driver rep. rate
- e: electron charge

- $\circ \sigma$: RMS size
- $\circ n_B$: no. of bunches
- $\circ B_{avg}$: avg. ring field
- $\circ m_{\mu}$: Muon mass

Luminosity Multiple-Crossing Factor

$$\mathcal{L} = \frac{\gamma \tau_{\mu}}{2T_{\text{rev}}} \frac{N^2 n_B f_P}{4\pi\sigma^2} = \frac{\tau_{\mu} e B_{\text{avg}} N^2 n_B f_P}{4\pi m_{\mu}} \frac{1}{4\pi\sigma^2}$$

First factor is the average number of crossings

- Always choose the highest possible magnet fields in the collider ring
 - Everything else is much harder

Beam-Beam Tune Shift

- \odot Maximize luminosity by running at maximum beam-beam tune shift ($\Delta \nu$)
- $\odot\, {\rm We}$ only have around 1000 turns, potentially allowing large $\Delta \nu$

$$\Delta \nu = \frac{\beta^* N r_{\mu}}{4\pi\sigma^2\gamma} = \frac{N r_{\mu}}{4\pi\epsilon_n}$$

 $\circ \beta^*$: C-S beta at IP $\circ r_{\mu}$: classical μ radius

 $\circ \epsilon_n$: normalized transverse emittance

Proton Driver Power

Power is product of
Particles per bunch
Bunches per cycle
Cycle frequency
Energy of beam

 \odot Energy transferred to muons with efficiency η_{cap}

 \circ Average muon energy at capture: E_{cap}

Proton Driver Power

$$P_P = \frac{E_{cap} N n_B f_P}{\eta_{cap} \ \eta_{trans}}$$

- Fraction of captured muons making it to collider: η_{trans}
- $\circ \eta_{cap} \eta_{trans} / E_{cap}$ is the physical quantity $\circ \eta_{trans}$ depends on where "capture" ends $\circ \eta_{cap} / E_{cap}$ depends only on target/capture system

Neutrino Radiation

- Increases strongly with energy
- Proportional to muons per second times average turns

$$C_{\mathsf{rad}} = rac{ au_{\mu} e B_{\mathsf{avg}}}{2\pi m_{\mu}} N n_b f_P$$

Make ring deeper to reduce radiation
 Reduction factor proportional to ring depth
 Straights create strong radiation

Luminosity in Terms of Other Quantities

OUse beam-beam tune shift and proton power:

$$\mathcal{L} = \frac{\tau_{\mu} e B_{\text{avg}} \eta_{\text{trans}} P_P \Delta \nu}{2\pi m_{\mu}} \frac{\eta_{\text{cap}} \gamma}{\beta^*} \frac{\beta_{\text{cap}} \gamma}{E_{\text{cap}} r_{\mu}}$$

Improve luminosity with

Higher B_{avg}
 Reducing losses getting to collider
 Increasing proton driver power
 Running with larger beam-beam tune shift
 Lower beta at IP

Improving Luminosity

$$\mathcal{L} = \frac{\tau_{\mu} e B_{\text{avg}} \eta_{\text{trans}} P_P \Delta \nu}{2\pi m_{\mu}} \frac{\eta_{\text{cap}} \gamma}{\beta^*} \frac{1}{E_{\text{cap}} r_{\mu}}$$

What doesn't directly appear

Beam emittance

 \Box Bunch structure (fewer bunches for same P_P)

Improving Luminosity

 $\mathcal{L} = \frac{\tau_{\mu} e B_{\text{avg}} \eta_{\text{trans}} P_P \Delta \nu}{2\pi m_{\mu}} \frac{\eta_{\text{cap}} \gamma}{\beta^*} \frac{\eta_{\text{cap}} \gamma}{E_{\text{cap}} r_{\mu}}$ \circ Lower emittance may allow lower β^* \Box Smaller σ_z , energy spread (longitudinal) \Box Smaller β^* has smaller dynamic aperture \Box Improve β^* faster than η_{trans} reduction \odot Dependence of β^* on emittances not obvious \Box Except σ_z , may be weak

Luminosity Constrained by Radiation

What if we are constrained by radiation
 Maybe we can't go below a certain depth
 Assuming a given energy

$$\mathcal{L} = C_{\mathsf{rad}} rac{\Delta
u \gamma}{eta^* r_\mu}$$

• Only improve with • Larger $\Delta \nu$ • Smaller β^*

Beam-Beam Tune Shift

Reach some beam-beam tune shift

$$\Delta \nu = \frac{N r_{\mu}}{4 \pi \epsilon_n} \qquad P_P = \frac{E_{\text{cap}} N n_B f_P}{\eta_{\text{cap}} \eta_{\text{trans}}}$$

 \circ Lower N in proportion to ϵ_n

○ Lower N permits increasing n_Bf_P
 □ Increased f_P reduces p driver space charge
 □ ε_n sufficiently low for p driver
 □ Increased n_B, interesting...

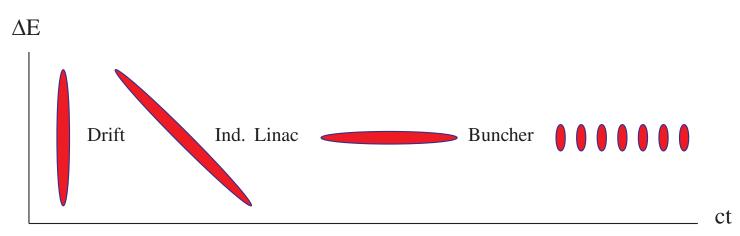
Making the Beam Sane

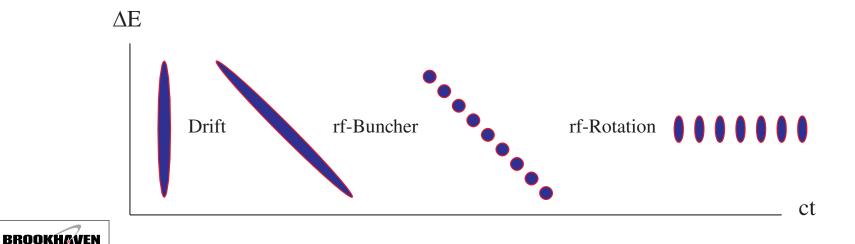
- Immediately at target
 - Energy spread too large
 - Angular spread large
- Tapered solenoid to reduce angular spread
- Reducing energy spread: phase rotation
 Drift to introduce time spread
 Time dep. voltage reduces energy spread
 Bunch at 200 MHz for cooling

Making Beam Sane Neuffer Phase Rotation

Imagine beam already bunched

- Higher frequency RF than bunches
 - □ Early (high energy) bunches decelerated
 - Late (low energy) bunches accelerated
- Bunch and phase rotate together
- Avoids low frequency RF and/or induction linac





Phase Rotation Scenarios

NATIONAL LABORATOR

21

Making Beam Sane Low Frequency Cooling

Low frequency ionization cooling ring/spiral
 Reduces longitudinal emittance rapidly
 Simulated rings (Balbekov) worked well
 Maybe not realistic...
 Would avoid bunch train

Ionization Cooling Challenges

- Technology for reaching sufficiently low emittance
- High field magnets
 High magnetic fields on cavities
 Minimizing losses in system
 Cost of system

Ionization Cooling Amount of RF Required

Energy losses in absorber restored in RF
 Amount of RF largely determines system cost

 $a \rho a$

$$\Delta E = \sum_{k} E_k \cos \phi_k = \frac{p \rho c}{\Lambda \eta_{\text{cool}}} \ln \frac{\epsilon_{6i}}{\epsilon_{6f}}$$

 $\circ E_k$: RF energy gain k $\circ \phi_k$: RF phase k
 $\circ p$: momentum $\circ \beta c$: velocity
 $\circ \Lambda$: partition no. sum $\circ \eta_{\text{cool}}$: efficiency
 $\circ \epsilon_{6i}$: initial 6-D emit. $\circ \epsilon_{6f}$: final 6-D emit.

Ionization Cooling Amount of RF Required

$$\Delta E = \sum_{k} E_k \cos \phi_k = \frac{p\beta c}{\Lambda \eta_{\text{cool}}} \ln \frac{\epsilon_{6i}}{\epsilon_{6f}}$$

\circ What lowers η_{cool} ?

- Mismatch when entering new system
- Approaching equilibrium
 - Maintain large angular, energy spread
 - \diamond Taper down channel β function
 - Taper down bunch length (RF phase)

Ionization Cooling Amount of RF Required

$$\Delta E = \sum_{k} E_k \cos \phi_k = \frac{p\beta c}{\Lambda \eta_{\text{cool}}} \ln \frac{\epsilon_{6i}}{\epsilon_{6f}}$$

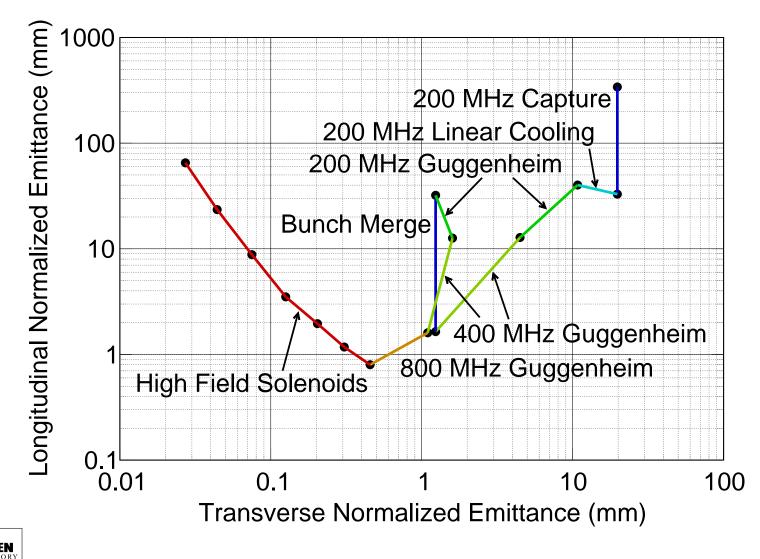
Less voltage with smaller RF phase
 Lower longitudinal acceptance
 On crest, no longitudinal focusing

Ionization Cooling Losses

$$Q \equiv \frac{d\epsilon_6/\epsilon_6}{dN/N} \frac{N_f}{N_i} = \left(\frac{\epsilon_{6f}}{\epsilon_{6i}}\right)^{(1/Q)} \quad Q = \frac{\eta_Q \Lambda \tau_\mu dE}{\beta m_\mu c \, ds}$$

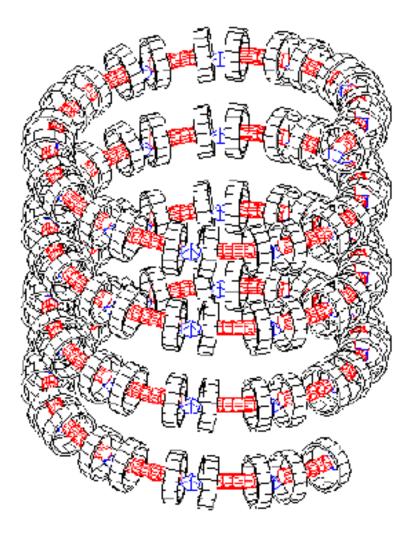
\bigcirc Maximize Q to minimize losses

Keep η_Q large: same problems as η_{cool}
 Keep average gradient large


 Running closer to crest
 Densely packed lattice

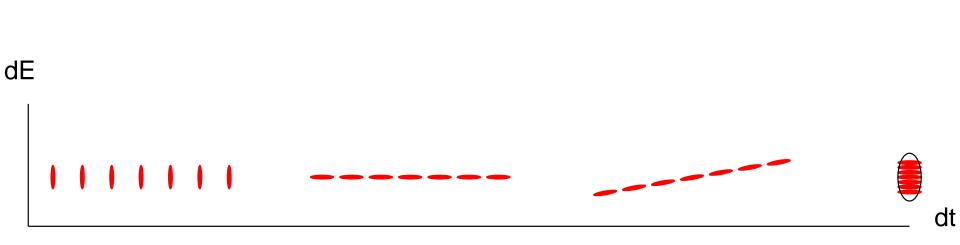
Cooling Scheme

Cooling Guggenheims


- Straight cooling lattice only cools transversely
- Add bend, wedge absorbers to couple to longitudinal
- Avoid injection/extraction
- O Long bunch trains won't fit in ring
- Taper the channel: avoid equilibrium
- One for each sign
- Increase frequency: maintain energy spread

Cooling Guggenheim

Cooling Bunch Merge


• Prefer everything in one bunch

- Needed to achieve beam-beam tune shift
 Avoid if final emittance small enough
- Induce energy spread: low frequency RF
- Drift until coincide in time
 - Accelerate drift with wiggler?
- Capture in single bucket
- O Significant losses: factor of 3!

Cooling Bunch Merge

Cooling Post Merge Guggenheims

- Longitudinal emittance now large
- Reduce longitudinal emittance
- Reduce transverse emittance also
- Space charge becomes significant
- Avoided if no bunch merge

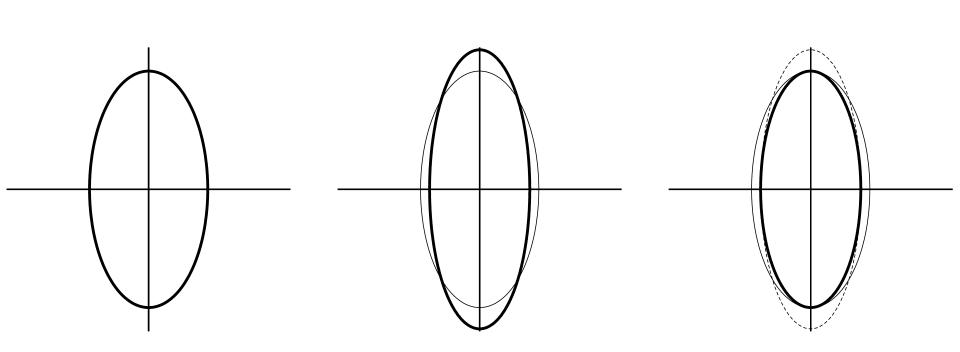
Cooling High Field Solenoids

Need to get smaller transverse emittances
 Need large angular spreads in beam
 Use high-field (50 T) solenoids
 Little net 6-D cooling
 Reduces transverse emittance at expense of longitudinal

Cooling Low Emittance Scheme: Why?

- Avoid the bunch merge
 - □ Factor of 20 cooling each transverse
 - \Box Reduces losses by factor of 3 (η_{trans})
- \circ Allows lower eta^*
- Acceleration, ring beamlines less expensive
- Potentially permit high energy bunch merge
 Maybe more efficient

Cooling Low Emittance Scheme: How?


- \circ Problem: getting small β functions
 - High magnetic fields
- OProposal "PIC"
 - Old idea of Balbekov
 - Run on linear resonance
 - Unstable direction is transverse momentum
 - Stable position is transverse position
 - Cooling reduces transverse momentum as much as instability increases

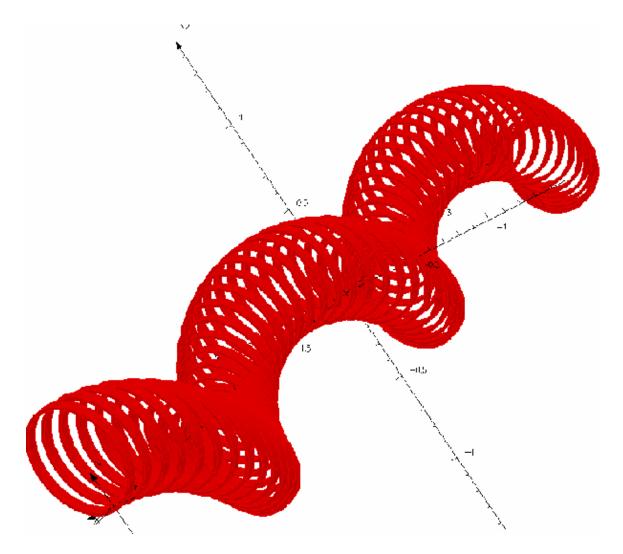
Cooling PIC Principle

Cooling Low Emittance: Issues

ONO focusing

- System becomes sensitive to perturbations
- □ Space charge
- Chromatic aberrations
- Insuring losses don't exceed benefits

Cooling Other Systems


- Helical cooling channel
- Hoped to be more efficient than Guggenheim
- Still under development, various issues
 Getting cavities in channel

Cooling Helical Cooling Channel

Acceleration

 \circ Get to high energy without significant losses \circ Constant gradient V,

$$\frac{N_f}{N_i} = \left(\frac{E_f + p_f c}{E_i + p_i c}\right)^{-\frac{m_\mu c}{\tau_\mu V}}$$

Losses very modest if average gradient high

Acceleration Techniques

Higher energies, more time for

□ Ramping magnets

- Varying RF frequency
- Ocan use higher frequency RF

○ RLAs

FFAGs, maybe adjusting RF frequency
 More passes through RF

Fast ramping synchrotron

Acceleration Beam Loading

Possibly more passes through RF

- Ramping synchrotrons may use many passes
- FFAGs can adjust RF frequency
- ORF frequencies are higher

Less stored energy

OPower supplied to replace lost energy?

Collider Ring

- \odot Achieving sufficient dynamic aperture for small β^*
- \odot Achieving larger $\Delta \nu$
- Question: to what extent do we get help from
 - Smaller longitudinal emittance
 - Smaller transverse emittance
- Highest field possible for luminosity

Sample Parameters

CoM energy (TeV) 1.5 4 8 \mathcal{L} (10³⁴ cm²s⁻¹) 1 4 8 5.2 5.2 10.4 B_{avg} (T) β^* (mm) 3 10 3 dp/p rms (%) 0.09 0.12 0.06 Ring depth (m) 13 135 540 0.07 0.07 0.07 η trans f_P (Hz) 13 6 3 P_P (MW) 1.8 0.8 4 0.1 N (10¹²) Δv ϵ_{\perp} (mm·mrad) 25 $|\epsilon_{\parallel}$ (mm·rad) 72

Final Remarks

Getting luminosity means

Increasing proton driver power

- Increasing transmission
- □ Increasing beam-beam tune shift □ Lowering β^*
- Increasing collider bending field
- OAII these increase radiation, except

Beam-beam tune shift

Final Remarks

 Most transmission loss before acceleration Improving transmission requires Higher average RF gradients Reducing inefficiencies Addresses Matching Approaching equilibrium
 Best hope for improvement is eliminating rebunching

Final Remarks

 Lowering emittance only helps indirectly Allows higher proton driver rep rate Easier on proton driver But no power reduction Potentially eliminate rebunching \odot Maybe improve β^* • Comes with a transmission cost

