

Topical Workshop on Neutrino Factories and Muon Colliders

Bunch Recombination and

Acceleration

Robert Abrams

Muons, Inc.

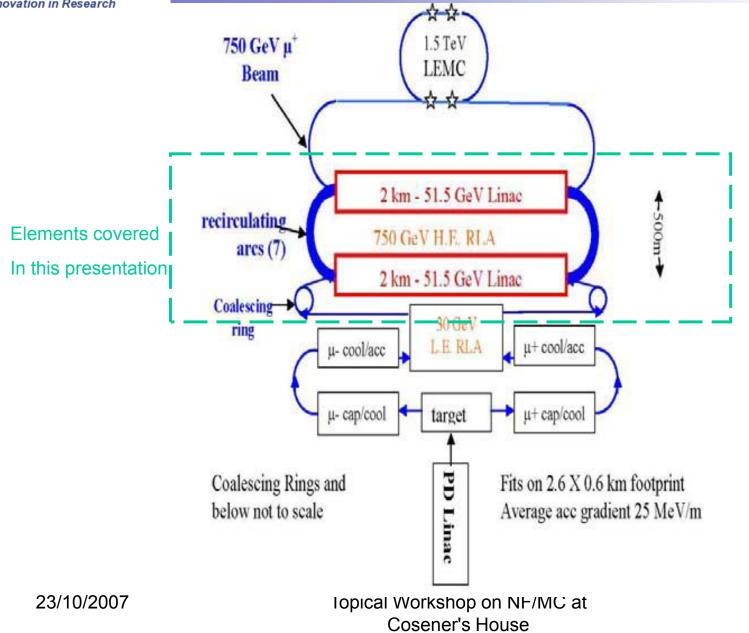
23/10/2007

Topical Workshop on NF/MC at Cosener's House

1

Outline – Coalescence and Acceleration

- Introduction
- Overview of Neutrino Factory/Muon Collider architecture
- Bunch Coalescing
 - Examples of coalescing
 - Motivation and background
- Coalescing ring for muon collider/neutrino factory
 - 20 GeV coalescing ring parameters, scenarios, model lattice
- Acceleration up to 750 GeV
 - Recirculating LINACs (RLAs)
 - Circular accelerator in Tevatron tunnel
- Summary
- References


Introduction

- Disclaimer
 - Non-expert view of concepts and recent progress
 - No original contributions by RJA, see references
 - Fermilab-centric
 - Apologies if I may have omitted someone's work
 - Any mistakes mine
- New Fermilab Initiatives/Priorities that may affect NF/MC prospects at FNAL

—	Completion of Tevatron Era, support for existing v program	(short term)
_	Significant involvement in LHC	(short/intermediate term)
_	Pursue ILC bid, ILC test facilities, ILC R&D, components	(short/intermediate term)
_	FNAL Steering committee : Project X, intensity frontier physics	(intermediate term)
_	Neutrino factory/Muon collider R&D	(intermediate/long term)
	Compatibility and coordination of NF/MC with ILC and Project X programs important	

Schematic NF/LEMC Architecture

Bunch Coalescing: An Existing Technology

- Some Previous Applications
 - BNL AGS/RHIC
 - Coalesced 4 AGS bunches into single bunch for injection to RHIC main ring
 - FNAL Main Injector (MI)
 - Coalesce up to 16 bunches into single bunches in Main Injector to improve Tevatron Run II luminosity (C. Bhat)
- Application to Muon Collider
 - Increase luminosity and provide a better time structure for experiments

Proton Coalescing Measurement at FNAL

Trace separation ~ 1 ms. Stable particles can be coalesced over a long ime

Topical Workshop on NF/MC at **Cosener's House**

- How to do bunch recombination (coalescing)? Scenario:
 - Capture short bunches in high frequency RF buckets
 - Capture bunch train in lower frequency RF bucket
 - Manipulate bunch train: rotate of bunches within larger RF bucket by applying lower frequency RF
 - Coalesce sub-bunches into a single, larger bunch (adiabatically)
- At what point in the acceleration should bunches be coalesced?
 - In LINAC at relatively low energy?
 - In dedicated coalescing ring(s) after LINAC at higher energy?

Coalescing Muons at High Energy

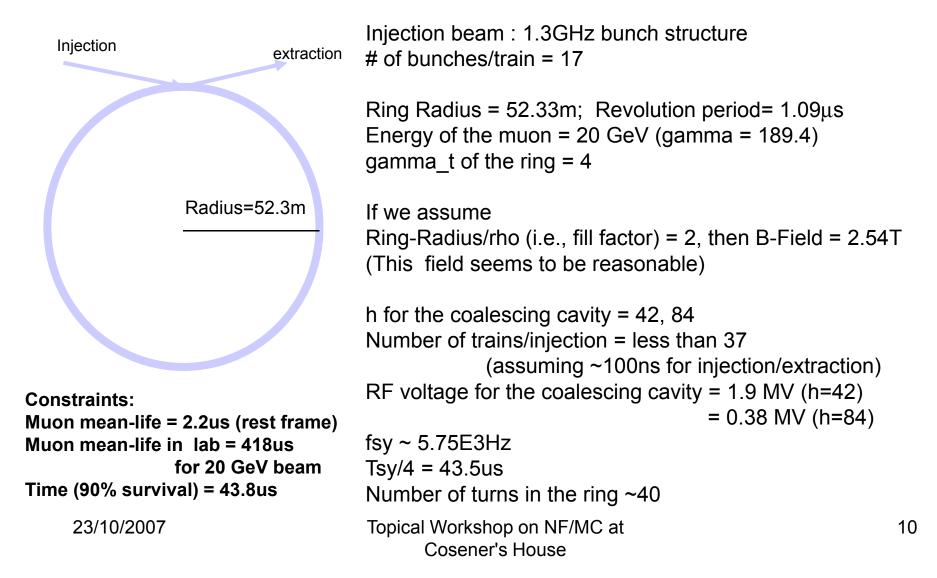
Advantages of coalescing multiple muon bunches at high energy

- Higher energy muons live longer for more RF manipulation time. Longer decay lengths allow more turns before decay.
- Reduces problems with high intensity bunches in Linac,
 - e.g. Beam loading and wake-field effects

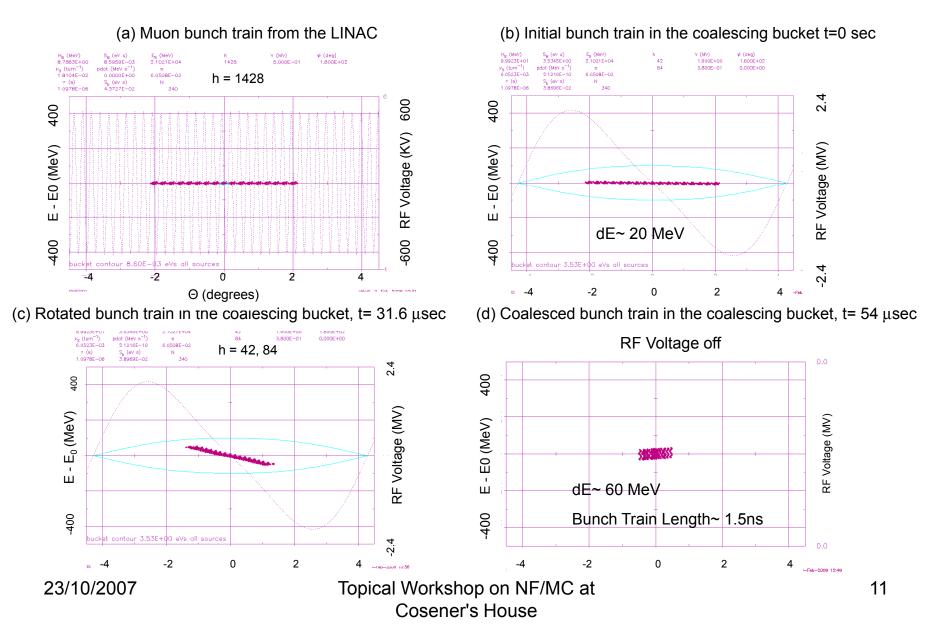
image current of beam \rightarrow E-field opposite to cavity E-field

- Reduces problems of space-charge detuning for PIC/REMEX schemes

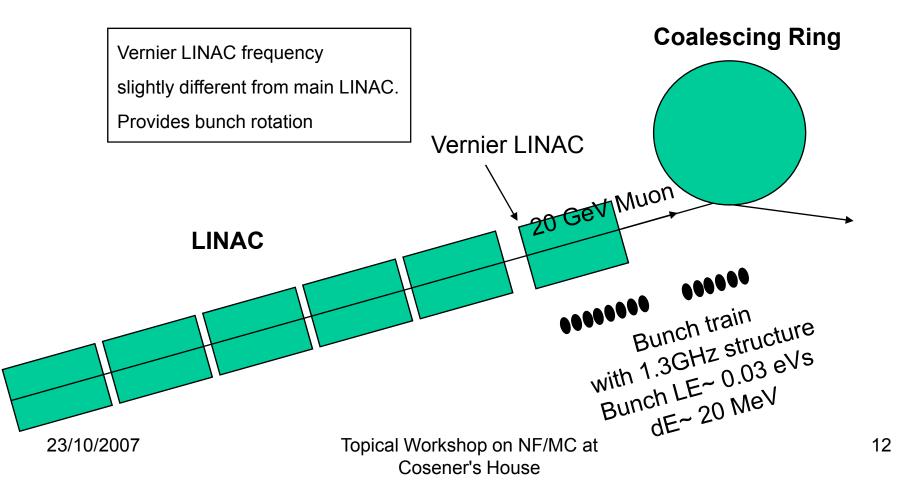
 $\Delta V_{sc} = \frac{3}{2} \frac{r_o}{\varepsilon \pi} \frac{N}{B\beta\gamma^2} \qquad \text{where } N \text{ is no. of charges per unit length, } r_o \text{ is classical electron radius,} \\ \Delta v \text{ is tune spread}$


- Improves synergy between neutrino factory and Muon collider designs (see next slide)

- At ~ 20 GeV muons have been accelerated one stage beyond
 LINAC to energy range that is useful for neutrino factory
 - The components for the NF can be reused for a muon collider front end
 - The additional components for the muon collider, coalescing rings and additional accelerators, collider ring, may be added as extensions of NF
 - The high frequency time structure is suitable for neutrino experiments
 - The coalesced bunches are suited to acceleration to full energy in the MC

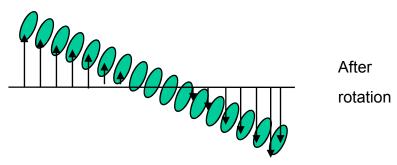


Some typical parameters used by C. Bhat for simulations, Ankenbrandt et al

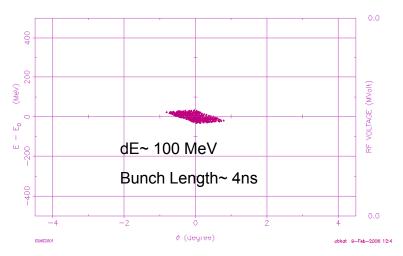


Coalescing Scenario 1: RF cavities in the coalescing ring

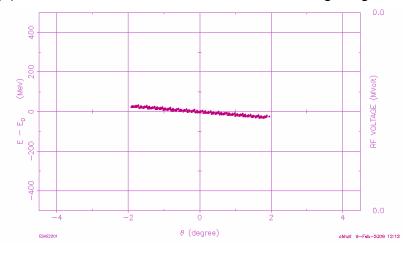
Schematic of LINAC and Coalescing Ring with Vernier-LINAC (Popovic)

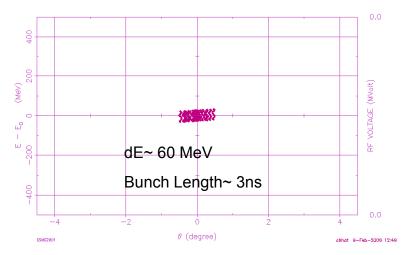


Scenario 2: Vernier-linac tilts bunch train before injection


in coalescing ring, no RF in ring

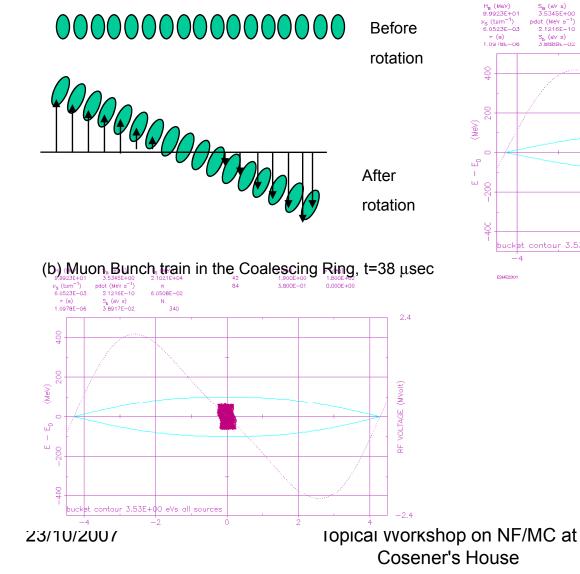
(a) Bunch train before and after the vernier-linac.


Before rotation

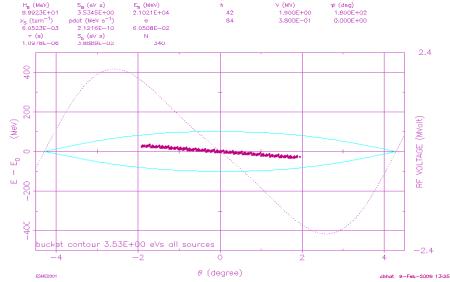

(c) Muon Bunch train in the Coalescing Ring, t=46 μsec

⁽b) Rotated Muon Bunch train in the Coalescing Ring, t=0 sec

(d) Muon Bunch train in the Coalescing Ring, t=71 μsec

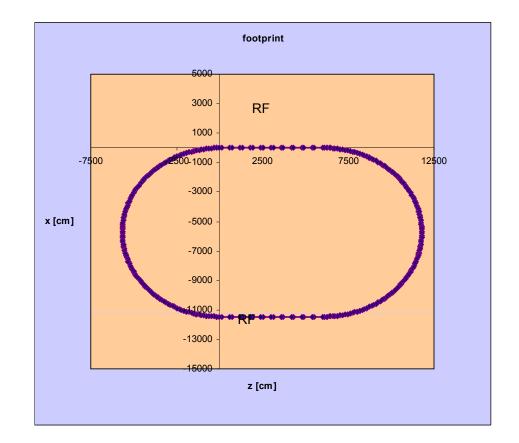


23/10/2007

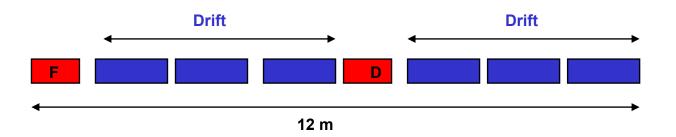

Topical Workshop on NF/MC at Cosener's House

(a) Bunch train before and after the vernier pre-linac

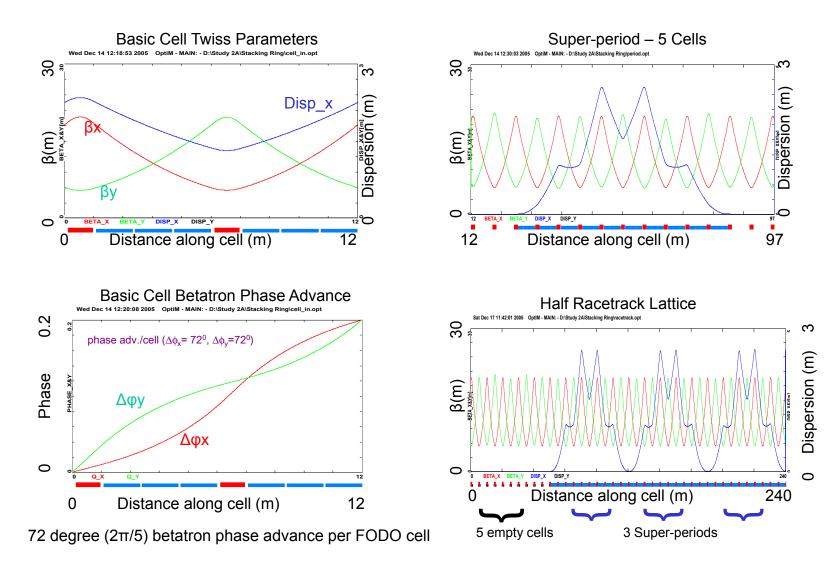
(a) Muon Bunch train in the Coalescing Ring, t=0 sec


Model Lattice for Coalescing Ring (A. Bogacz)

- Requirements and objectives
 - Large momentum compaction
 - Minimize muon decay losses
 - Maintain small betas
 - Low transition gamma
 - Large radial aperture

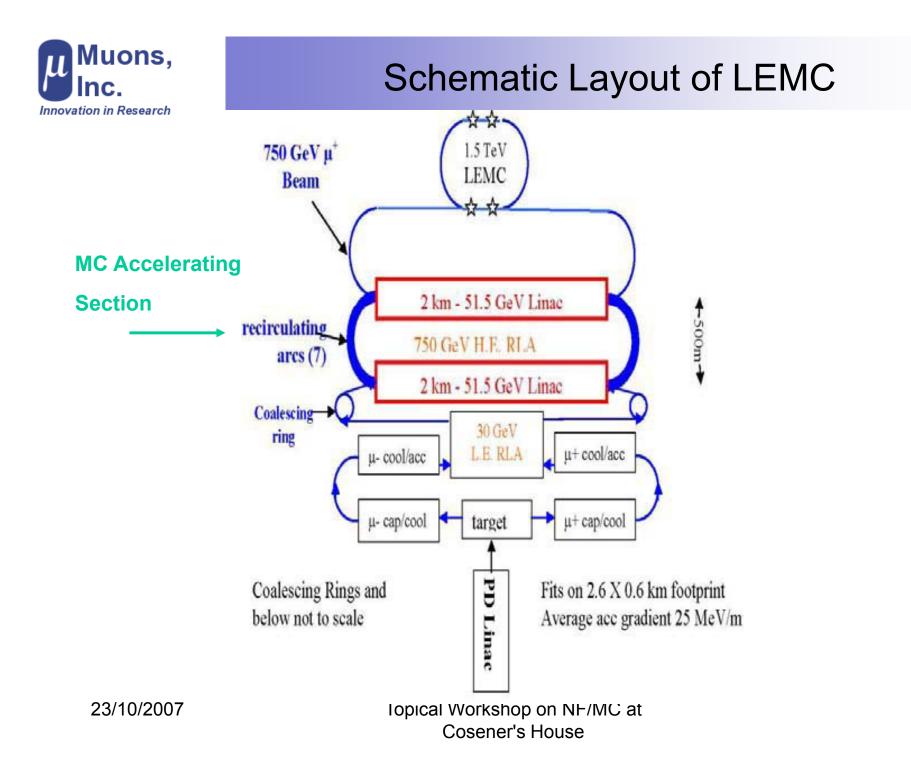

Model Layout for 20 GeV Coalescing Ring

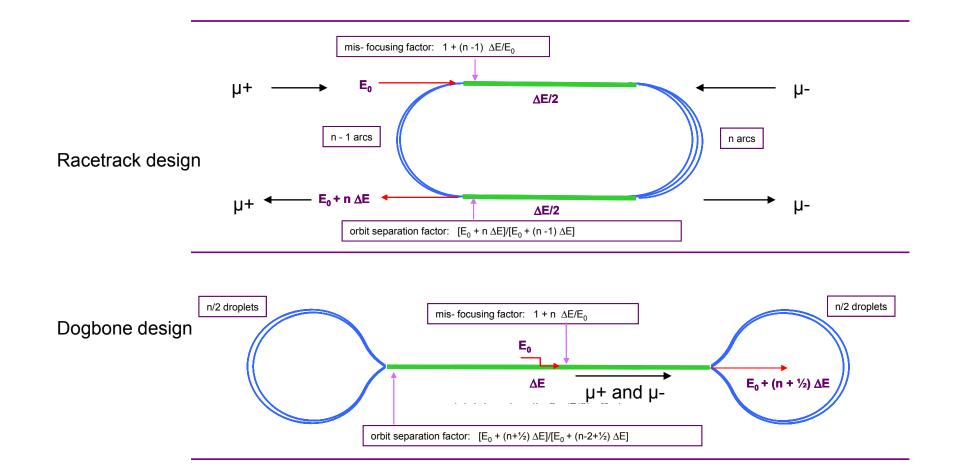
- Racetrack Configuration
 - RF in 2 straight sections
 - Bunch rotation then coalescence
 - Periodic FODO-based design
- Footprint
 - Racetrack ~ 110m x 180m



- Basic cell
 - FODO (focus-drift-defocus-drift) 12 m long
 - Drift space filled with dipoles in curved sections
 - Drift space in straight sections: RF, injection, extraction elements
 - Magnets: (1.5m, 1.6T dipoles), (1.0m, 14 T/m quadrupoles)

20 GeV Lattice Calculation (from PAC07)


Topical Workshop on NF/MC at Cosener's House


- Continue investigation of vernier LINAC rotator concept
- Refine RF manipulation to achieve optimization of bunch width and coalescing time
- Investigate single coalescing ring for both μ^+ and μ^- .

- Why 750? Fermilab Directorate urged focusing on 1.5 TeV muon collider (instead of maximum energy muon collider ring within FNAL site). Also, theoretical reasons for > 500 GeV (Eichten, this conference)
- Two acceleration schemes presented here:
 - Recirculating Linear Accelerators (RLA), JLab, FNAL, MuonsInc study
 - Muon collider inside TeVatron tunnel, U. Miss., BNL et al study

- Advantages of the Dogbone configuration over Racetrack
 - One set of RF cavities instead of two
 - Energy gain per trip (droplet) in Dogbone is a factor of two larger than in Racetrack.
 - Greater energy separation in Dogbone gives better orbit separation in droplet arcs compared to Racetrack circular arcs
 - μ⁺ and μ⁻ traverse linac in the same direction, accelerate simultaneously in the Dogbone configuration, gives more uniform focusing profile.
 - Racetrack Linacs' separation determined by maximum arc diameter. Dogbone droplets sizes can be smaller for lower energies. Muon decay losses less for dogbone.
- Disadvantage of the Dogbone configuration
 - Requirement of mirror symmetric optics for simultaneous acceleration of μ^+ and μ^- .
 - May be apparent disadvantage Racetrack may also require mirror symmetry

- Further pros and cons of racetrack vs. dogbone designs
- Lattice designs, especially for droplet-shaped arcs
- Incorporation of ILC-type LINAC elements (1.3 GHz)
 - Project X impact and compatibility
- Maximum number of passes allowed
 - Are multiple stages needed to reach 750 GeV? How many?
- Refinement of optics designs

- Summers, et al paper (PAC07 THPMS082)
- Use existing FNAL Tevatron tunnel with 2 rings, 1000m radii
 - Reduces construction costs
 - Estimate of radiation produced appears to be within acceptable limits
- Assume muons produced, cooled, coalesced, accelerated up to 30 GeV
- !st ring accelerates from 30 GeV to 400 GeV
 - 28 orbits, 0.59 msec, muon survival during acceleration = 80%.
 - 14 GV SRF at 1.3 GHz, 31MV/m SRF cavities, 42 stations spaced equally along ring.
- Lattice and magnets for 1st ring
 - FODO Lattice 30.45m long half cell, similar to FNAL lattice.
 - 1.7 m, 400 Hz, 30 T/m Quadrupoles (conventional).
 - 6.3 m, 400 Hz, 1.8 Tesla Dipoles (conventional), bore 30mm x 6 mm, 8 dipoles per cell, 800 total.
 - Magnets on for half cycle, 13 times per second (reduces power consumption)
 - Grain Oriented 3% Silicon Steel El Transformer Laminations for rapid ramping

Other magnet characteristics have been calculated

- 2nd ring accelerates from 400 GeV to 750 GeV, 44 orbits (0.92 ms), 92% muon survival
- 8 GV RF at 1.3 GHz , 12 RF stations along ring.
- Hybrid ring consists of conventional and superconducting dipoles
- Lattice half cell, FODO 30.45 m long, 5 dipoles (F B₁ B₂ B₃ B₂ B₁ D)
 - B₁ are ramping magnets 3.75 m long, +/-1.8 T, 550 Hz, 5mm x 50 mm bore
 - B₂ are DC magnets 4.2 m long, 8T superconducting
 - B_3 are ramping magnets 7.5 m long, +/-1.8 T, 550 Hz
- At injection (400 GeV) ramping dipoles oppose DC dipoles
- At extraction (750 GeV) ramping dipoles act along with DC dipoles
- Quadrupoles are 3.2 m long, also ramp: 16 to 37 T/m (no sign change)

- Fitting into 1.3GHz RF, 5mm or 10mm bunch length?
- Longitudinal dynamics, head/tail...
- Wakefields with 8% beam loading.
- Momentum compaction of the 400 to 750 GeV hybrid ring.
- Momentum acceptance and magnet apertures.
- Design complete lattices.
- Multipole B fields from eddy currents in the pole faces.
- Magnetic field quality with small aperture magnets.
- Forces on fast ramping magnet pole faces.
- Build a short prototype fast ramping dipole.

- Described schemes for bunch coalescing at ~20 GeV
 - Acceptable coalescing times demonstrated by simulations
- Described 2 types of accelerators for acceleration of muons from ~20 GeV to 750 GeV
 - RLAs with RF in long straight section(s)
 - Circular ring with RF distributed along ring that fits in Tevatron tunnel

References

- 1. C. Bhat and C. Ankenbrandt et al , 2006 LEMC Workshop: Muon Coalescing
- 2. C. Bhat et al, Phys. Rev. ST **10**, 034403 (2007): Use of dual RF systems to accelerate large longitudinal emittance intense beam in a synchrotron
- 3. R. Johnson, et al, PAC07 THPMN095: Muon Bunch Coalescing,
- 4. M. Popovic, Vernier LINAC
- 5. A. Bogacz, this conference, PAC07 THPMN095 and others: Lattice simulations
- D. Summers, et al, PAC07 THPMS0825: Muon Acceleration to 750 GeV in the Tevatron Tunnel for a 1.5 TeV Mu+ Mu- Collider