

LHC Injectors Upgrade

LHC Injectors Upgrade

Collective effects and limitations in the PS

Giovanni Rumolo, on behalf of the LIU-PS project team Special thanks to S. Aumon, E. Benedetto, H. Damerau, S. Gilardoni, S. Hancock, A. Huschauer, G. Iadarola, E. Métral, R. Steerenberg, C. Yin-Vallgren

Giovanni Rumolo, LIU-2011 Event, 25 November 2011, CERN

- 1. High intensity/brightness LHC (and physics) beams in the PS
- 2. Several collective phenomena
 - Space charge at injection
 - Coherent beam instabilities along the cycle
 - Electron cloud at flat top
- 3. Summary and outlook

- 1. Linac 4 will allow for production of higher brightness beams in the PSB \rightarrow Higher injection energy (160 MeV)
 - \rightarrow H⁻ injection
- 2. Higher extraction energy into the PS (2 GeV)
 - \rightarrow Eases PS injection (weaker space charge, transversely smaller beams)

LASLETT TUNE SHIFT

$$\Delta Q_{x,y} = \frac{r_p N_b}{(2\pi)^{\frac{3}{2}} \sqrt{2\beta} \sigma_z} \oint \frac{\beta_{x,y}(s) ds}{\sqrt{\epsilon_{x,y} \beta_{x,y}(s)} (\sqrt{\epsilon_x \beta_x(s)} + \sqrt{\epsilon_y \beta_y(s)})}$$

If we assume that:

- \Rightarrow The optics at the PS injection remains the same
- \Rightarrow The bunch length does not change

$$\frac{\left(\gamma^2\beta\right)_{2\,\text{GeV}}}{\left(\gamma^2\beta\right)_{1.4\,\text{GeV}}} = 1.63 \qquad \Longrightarrow \qquad \frac{N_b}{\epsilon_x\epsilon_y} \quad \text{up to } 63\% \text{ larger}$$

LASLETT TUNE SHIFT

$$\Delta Q_{x,y} = \frac{r_p N_b}{(2\pi)^{\frac{3}{2}} \gamma^2 \beta \sigma_z} \oint \frac{\beta_{x,y}(s) ds}{\sqrt{\epsilon_{x,y} \beta_{x,y}(s)} (\sqrt{\epsilon_x \beta_x(s)} + \sqrt{\epsilon_y \beta_y(s)})}$$

PS and higher brightness beams...

- ⇒ What are the problems posed by space charge @PS injection?
- ⇒ Can there be other limitations from collective instabilities (impedance, electron cloud) elsewhere along the cycle?

Space charge at injection (1.4 GeV)

Space charge at injection (1.4 GeV)

LHC beams in the measured tune diagram @ 1.4 GeV

Interesting region for possible placement of working point and allow for more tune spread? (E. Benedetto)

Working point

- \Rightarrow Nominal (0.21,0.24)
- ⇒ Coherent tune shift about (-0.003,-0.01), as measured by S. Aumon
- ⇒ Incoherent tune spread (-0.2,-0.26)

Extreme space charge MD (2010)

	N _b (x 10 ¹⁰ p)	ε _{x,y} (μm)	4σ _t (ns)	$\Delta \mathbf{Q}_{\mathbf{y}}$				
LHC50 SB rebucketed	150.0-190.0	2.5-3.0	130	-0.34				
H. Damerau, S. Gilardoni, S. Hancock, R. Steerenberg								
Bunch adiabatically shortened with 10MHz cavity @1.4 GeV FB (130ns → 90ns)								
Huge tune spreads in both horizontal and vertical plane, however no loss observed								
Emittance growth measured on a 1.2sec plateau								

Extreme space charge MD (2010)

	N _b (x 10 ¹¹ p)	ε _{x,y} (μm)	$4\sigma_t$ (ns)	ΔQ _y
LHC50 SB rebucketed	150.0-190.0	2.5-3.0	130	-0.34

20% ε_v growth over 1.2sec

65% ε_x growth over 1.2sec

Percentage of emittance growth

H. Damerau, S. Gilardoni,

S. Hancock, R. Steerenberg

Percentage of emittance growth

Space charge MDs at 2 GeV

Shortened bunch @2GeV

- $\rightarrow \Delta \boldsymbol{Q}_{\boldsymbol{x}} = -0.19, \Delta \boldsymbol{Q}_{\boldsymbol{y}} = -0.27$
- \rightarrow Three working points analyzed
 - \circ Q_x=0.15, Q_y=0.196
 - \circ Q_x=0.17, Q_y=0.23
 - Q_x=0.17, Q_y=0.30

To be noted that the injection optics for the PS upgrade will be actually different ! → see talk by J. Borburgh

An overview on the PS coherent instabilities

- Transverse headtail instabilities at flat bottom
- Fast instabilities at transition
- Longitudinal coupled bunch instabilities
- Electron cloud

Headtail instabilities at flat bottom

Headtail instabilities at flat bottom

- Explained like single bunch instabilities due to the resistive wall impedance
- **HEADTAIL code** was successfully used for reproducing the evolution and the patterns with numbers of nodes consistent with the chromaticity values
 - ⇒ More MDs needed
 - ⇒ HEADTAIL simulations multi-bunch and with space charge
 - ⇒ Transverse feedback system? (PSB and SPS need one!)

- Transverse headtail instabilities at flat bottom
- Fast instability at transition
- Longitudinal coupled bunch instabilities
- Electron cloud

Fast instability at transition Σ , ΔR , ΔV signals $2 - \frac{x \cdot 10^4}{2}$ δ^{10⁴} S. Aumon, 2010 Vertical Delta signal Longitudinal beam density signal [U.A.] Longitudinal beam density Vertical Delta signal [U.A.] ~ 700 MHz 🗖 10 ns Time (10 ns/div) E. Métral et al., 2003 -2^L 80 160 100 120 140 180 Time[ns]

- TOF becomes unstable when crossing transition above a certain intensity threshold, which
- \rightarrow depends on bunch longitudinal emittance
- \rightarrow depends on gamma jump scheme

Fast instability at transition

Fast instability at transition

HEADTAIL simulations

0.008

0.006

0.004

0.002

-0.002

-0.004

-0.006

-0.008

20000

0

eta

- \rightarrow can be done on the accelerating ramp, with and without $\gamma-jump$ scheme
- → reproduce quite accurately the instability evolution using a broad band impedance model of 2 M Ω /m at 1 GHz

22000

Nb turns

- Transverse headtail instabilities at flat bottom
- Fast instability at transition
- Longitudinal coupled bunch instabilities
- Electron cloud

Longitudinal coupled bunch instabilities

- Longitudinal coupled bunch instabilities with both 25ns and 50ns beams observed (previously also with 75ns and 150ns beams)
 - ✓ During the ramp
 - ✓ At flat top when ramping down h=21 during bunch splitting

- Transverse headtail instabilities at flat bottom
- Fast instability at transition
- Longitudinal coupled bunch instabilities
- Electron cloud

Electron cloud can be measured in the PS thanks to a shielded button pick up (with stripline for possible clearing voltage applied)

Recent systematic scans taken with

 \Rightarrow 50ns and 25ns beams

Simulations ongoing with the build up code PyECLOUD

- \Rightarrow Flux to the wall for a 25ns case (N_b=1.33 x 10¹¹ ppb, bunch length=4ns)
- \Rightarrow First estimation of the inner surface properties of the PS beam chamber

	δ_{max}	R ₀	Beam in the gap
Simulation	1.6	0.5	5%

Transverse instabilities at flat top (electron cloud?)

- Transverse instabilities at flat top observed in
 - 2001 (special cycle with 25ns bunches of 10ns stored for 100ms)
 - ✓ 2004-2006 (bunches adiabatically shortened to 10-11ns, instead of 12.5ns)

Wrap up and outlook

1. Space charge at PS injection

- \rightarrow Eased by injection at 2 GeV
- \rightarrow Lots of studies ongoing (MDs and simulations)
- Full impact to be understood via detailed simulations (Space Charge Working Group, F. Schmidt) and future MDs

2. Collective instabilities along the cycle

- → Transverse headtail instabilities
- \rightarrow Fast instability at transition
- \rightarrow Longitudinal coupled bunch instabilities during the ramp and at flat top
- \rightarrow Horizontal instabilities at flat top
- Pose limitations for high brightness beams, need for more studies (MDs, PS impedance model, extended simulations), hardware solutions (transverse and longitudinal feedbacks), alternative production schemes

3. Electron cloud at flat top

So far not a problem, effort ongoing to characterize the chamber walls (δ_{max}, R₀) to extrapolate behavior for higher brightness beams

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

