

SPS Upgrade

SPS collective effects and limitations

E. Shaposhnikova for LIU-SPS Beam Dynamics (SPSU - BD) Working Group <u>http://cern.ch/spsu/</u>

LHC beams in the SPS: acceleration from 26 to 450 GeV/c

SPS beams in 2011

Beam parameters		SPS at 450 GeV/c (stable beam)			
		LHC	LHC	FT	indiv
bunch spacing	ns	25	50	5	23040
bunch intensity	1011	1.2	1.6	0.1	3.0
number of bunches		4x72	4x36	2x2100	1
total intensity	10 ¹³	3.5	2.3	4.2	0.04
long. emittance	eVs	0.7	0.5	0.8	0.4
norm. h/v emittance	μm	2.5/3.0	2.0/1.9	8/5	2.5*

* Q20 optics

Intensity and beam quality (BQM!) limitations

- Single bunch effects
 - space charge → working point optimisation (H. Bartosik et al. + study of G. Franchetti, GSI)
 - TMCI (Transverse Mode Coupling Instability)
 - loss of Landau damping
 - longitudinal/microwave instability
- Multi-bunch effects (total intensity or local density)
 - e-cloud
 - beam loss (many possible reasons) → PS-SPS beam transfer studies
 - longitudinal coupled bunch instabilities
 - beam loading in the 200 MHz and 800 MHz RF systems
 - heating of machine elements (MKE, MKDV kickers, ...)
 - vacuum (beam dump and MKDV outgassing), ZS septum sparking

Intensity limitations for 25 ns beam - 2011

intensity /bunch	Origin	Leads to	Present/future cures/measures
0.2x10 ¹¹	loss of Landau damping / longitudinal multi bunch instability due to longitudinal impedance	- beam loss during ramp - bunch variation @450GeV/c	FB, FF, longitud. damper - 800 MHz RF system - emit. blow-up → RF
0.5x10 ¹¹	e-cloud due to the StSt vacuum chamber (δ_{SEY} =2.5, 1.3 is critical for SPS)	 dynamic pressure rise transv. (V) emit. blow-up instabilities beam losses 	- scrubbing run ($\delta \rightarrow 1.6$) - high chrom. (0.2/0.4) - transv. damper (H) - (50/75 ns spacing) - a-C coating ($\delta \rightarrow 1.0$)
>1.2x10 ¹¹	beam loading / ecloud / impedance / space charge (?)	- flat bottom/capture beam loss (>5%)	 - (lower chromaticity) - WP, RF gymnastics - collimation
1.5x10 ¹¹	beam loading in 200 MHz RF system	 voltage reduction on FT b-by-b phase modulation 	Feedback & FFRF cavities shortening
1.6x10 ¹¹	TMCI (transverse mode coupling instability) due to transverse impedance	 beam losses emittance blow-up 	 higher chromaticity high voltage transverse high bw FB

- Understanding the limitations: MD studies, simulations, calculations
- Impedance identification and reduction (MKE kickers, MKDV, 200 MHz RF)
- Low γ_t (Q20 optics) \rightarrow talk of H. Bartosik
- e-cloud mitigation \rightarrow talk of M. Taborelli
- Upgrade of the 200 MHz RF system \rightarrow talk of E. Montesinos
- Landau cavities (800 MHz RF system)
- Controlled longitudinal emittance blow-up
- High bandwidth transverse feedback (e-cloud, TMCI)

•injected emittance is increasing with intensity (~ 30%)
•emittance blow-up in SPS above 2x10¹¹, more in H-plane

Transverse Mode Coupling Instability

- **Measurements** (B. Salvant et al.): threshold @26 GeV/c $1.6x10^{11}$ for $\xi_V = 0$ ($\epsilon_L = 0.35 \text{ eVs}$, $\tau = 3.8 \text{ ns}$); (2.25-3.3)x10¹¹ for ξ_V in range 0-0.3, $\xi_H = 0.25$
- Threshold scales (matched V) ~ $\epsilon_L \eta$, where $\eta = 1/\gamma^2 1/\gamma_t^2$

• Cures:

- ➢ high ξ_V , ε_L and η → lower γ_t (Q20 optics!)
- ➢ impedance reduction... but
 ~30% of transverse SPS impedance
 is still unknown → ongoing work
 (B. Salvant et al.)
 ➢ transverse wide-band FB
- (W. Hofle et al. with LARP)

SPS impedance

- Reduce known high impedance → loss of Landau damping, heating
 - MKE: serigraphy the last after LS1 (M. Barnes et al.)

Transverse impedance issue. New design (B. Goddard)?

- MKDV, MKDH: complete transition pieces between magnet and tank (heating, outgassing)
- 800 MHz TW cavities: active damping \rightarrow new FB and FF (2014?)
- 200 MHz TW cavities: reduction by 20% due to modifications
- Search for unknown impedances:
 - transverse (broad-band and narrow-band)
 - Iongitudinal (narrow-band?)

Longitudinal impedance: reactive part

- Kickers main contribution to ImZ → loss of Landau damping
- Not much room for extra impedance,
- Similar for resistive impedance (stable phase shift measurements)

Longitudinal multi-bunch instability and its cures

•Threshold: reduces with energy ~1/E, single batch (25 ns spacing) with 2x10¹⁰p/b is unstable at the end of the ramp, beam is lost at nominal intensity

Possible source: fundamental /HOMs of 200 MHz or 800 MHz RF systems Cures:

- FB, FF, longitudinal damper for 200 MHz
- 800 MHz RF system in bunch shortening mode through the cycle, $V_{800} \sim 0.1 V_{200}$, $V_{800} \sim 0.15 V_{200}$ in the last MD - controlled longitudinal emittance blow-up $(0.35 \rightarrow 0.42 \text{ eVs} \rightarrow 0.65 \text{ eVs})$

T. Bohl et al.

Emittance blow-up by band-limited noise: intensity effects

synchrotron frequency spread during the cycle

modified by potential well distortion and beam loading (depending on bunch position in the batch) effects

SPS

pgrade

Longitudinal multi-bunch instability due to loss of Landau damping

Short PS bunches

Long PS bunches

T. Argyropoulous et al.

PS-SPS transfer: capture loss measurements

Experimental results: MD measurements from July 2011

H. Damerau et al.

PS-SPS transfer: capture loss simulations

short PS bunches (900 kV)

- •PS RF gymnastics simulated with measured particle distribution (H. Timko)
- \rightarrow Measured SPS transmission is reproduced with 20% emittance blow-up!
- different bunch lengths but similar emittances; SPS: V = 2 MV
- no intensity effects, beam loading or injection phase errors

25/11/2011

Low γ_t (Q20) optics

Emittance blow-up for the same intensity can also be reduced: loss of Landau damping $N_{th} \sim \epsilon^2 \eta \tau$. Since $\tau \sim (\epsilon^2 \eta/V)^{1/4}$ $\rightarrow \epsilon \sim \eta^{-1/2}$ and $\tau = \text{const}$ for V=const. For the same longitudinal parameters required $V \sim \eta$ - limit at 450 GeV/c to 7.5 MV

 \rightarrow 200 MHz RF upgrade

ightarrow more 800 MHz voltage also

SPS

Q26/Q20 comparison 50 ns beam (1.9x10¹¹ p/b)

200 MHz TW RF system upgrade

- Now: 2x4+2x5 sections
- Power/cavity (E. Montesinos):
 - 1.05 MW pulsed
- 5-section cavities are useless for ultimate intensities and 1 MW limit
- 7.5 MV used @450 GeV for beam transfer to LHC → more V needed for higher intensities (larger emittance)
 - → Rearrange 4 cavities (+ 2 spares) into 6 shorter cavities of 2x4+4x3 sections with 2 extra power plants to
 - reduce beam loading/cavity and beam coupling impedance (~L²)
 - restore voltage for ultimate beam
 - more voltage for Q20 optics

- High bunch intensities were achieved in 2011 for 50 ns beam
- Beam loss is important limitation for high intensity beams
- More MD time needed for optimisation of high intensity and high brightness beams
- Cures for longitudinal instability (800 MHz and emittance blow-up) are limited – need additional improvements (e.g. Q20, impedance reduction)
- MKE kickers give dominant contribution to longitudinal broadband impedance, improvement is expected after LS1
- Q20 optics is a very promising solution for beam stability, need more optimisation, transfer to LHC should be studied

Acknowledgments:

SPSU-BD SG: G. Arduini, H. Bartosik, C. Bhat, A. Burov, F. Caspers, E. Metral, Y. Pappaphilipou, G. Rumolo, B. Salvant, M. Taborelli +...

BE/RF: T. Argyropoulos, T. Bohl, H. Damerau, W. Hofle, S. Hancock, E. Montesinos, J. F. E. Muller, G. Papotti (OP), H. Timko, J. Tuckmantel, U. Wehrle +...

LIU: R. Garoby, B. Goddard + LIU-SPS

PS & PSB teams and SPS OP shifts for help in MDs