Introduction

Project Management

Anticipated Performance Goals

Planning

Summary
Goals & Means

Mandate
“The LHC Injectors Upgrade should plan for delivering reliably to the LHC the beams required for reaching the goals of the HL-LHC. This includes LINAC4, the PS booster, the PS, the SPS, as well as the heavy ion chain…”

Implementation
The LIU Project will:
- Analyze the status of the injectors and the HL-LHC requirements,
- Propose an upgrade path for the injectors, exploiting the work done by the Task Forces on the „PSB energy upgrade“ and „SPS upgrade“ and by the Working Group on the SPS upgrade,
- Organize the upgrades (WBS with resources and planning) and take care of their implementation,
- Take care of hardware and beam commissioning.
Basic Principles

To increase performance (soon extended for heavy ions)

- Brightness \uparrow

- Increase injection energy in the PSB from 50 to 160 MeV, Linac4 (160 MeV H) to replace Linac2 (50 MeV H^+)

- Increase injection energy in the PS from 1.4 to 2 GeV, increasing the field in the PSB magnets, replacing power supply and changing transfer equipment

- Upgrade the PSB, PS and SPS to make them capable to accelerate and manipulate a higher brightness beam (feedbacks, cures against electron clouds, hardware modifications to reduce impedance…)

To increase reliability and lifetime (until ~2030!)
(tightly interleaved with consolidation)

- Upgrade/replace ageing equipment (power supplies, magnets, RF…)

- Procure spares

- Improve radioprotection measures (shielding, ventilation…)

Baseline Upgrade Actions

- Construction of LINAC4

- Upgrades of PSB, PS and SPS

+ Consolidation...

«Typical» list of Work Units

All equipment and service groups are involved!
Introduction

Project Management

Anticipated Performance Goals

Planning

Summary
LIU Project Mandate (continued)

... The project co-ordinator will have the responsibility for the project management (WBS, technical co-ordination and integration, manpower and budget agreement with the departments as well as budget and timescale control). They will report on a regular basis to the Director of Accelerators and Technology. The executive role for manpower and budget for the projects/studies remains with the technical groups in the departments.

LIU Project Planning and Costing

1. Project / Product Breakdown Structure
2. Work Breakdown Structure
3. Organization Breakdown Structure
4. Resource Breakdown Structure
5. Resource Responsibility Matrix
6. Work Unit Dictionary
7. Project Gantt Chart :-)

Source: Project Management case study
– P. Bonnal, M. Meddahi
Project Organization Breakdown Structure

LIU Project team

Roland Garoby (Project Leader) - Malika Meddahi (Deputy) - Brennan Goddard (LIU-SPS machine coordinator) - Simone Gilardoni (LIU-PS machine coordinator) - Klaus Hanke (LIU-PSB machine coordinator) - Maurizio Vretenar (Linac4 Project Leader) - Laurette Ponce (Project Safety Officer) - Django Manglunki (LIU-Ion chain coordinator)

LIU-PSB coordination team
K. Hanke – Activity leader
B. Mikulec – Deputy
V. Raginel – Scientific secretary
https://espace.cern.ch/liu-project/liu-psb/

LIU-PS coordination team
S. Gilardoni – Activity Leader
H. Damerau – Deputy and Scientific secretary
https://espace.cern.ch/liu-project/liu-ps/

LIU-SPS coordination team
B. Goddard
E. Shaposhnikova – Deputy
G. Rumulo – Scientific secretary
https://espace.cern.ch/liu-project/liu-sps/default.aspx

LIU-Project Safety coordination
L. Ponce

Linac4 Project
M. Vretenar
http://linac4-project.web.cern.ch/linac4-project/

Templates and document handling and lifetime

![Image of EDMS portal]

Quality Control

https://edms.cern.ch/ - by EDMS team and Project Support Office
Work Breakdown Structure

LIU Work Breakdown Structure			

1	LIU project	Roland Garoby	
LIU 1	62011	Management activities (EVM, APT, MTP, EDMS...)	Roland Garoby - Malika Meddahi
LIU 2		General planning	Roland Garoby - Malika Meddahi
LIU 3		Safety	Laurette Ponce
LIU 4		Quality assurance	Roland Garoby - Malika Meddahi
LIU 5		Design office-Fabrication-Subcontracting-Materials (EN-MME)	Serge Mathot
LIU 6		Integration	Yvon Muttoni
LIU 7		Project team meetings	Cecile Noels
LIU 8	62011	Reviews - Conferences	Cecile Noels
2	LIU-PSB	Klaus Hanke	
LIU-PSB 1		Management	Klaus Hanke
LIU-PSB 2		PSB Beam dynamics	Christian Carli
LIU-PSB 3		Magnets	Antony Newborough
LIU-PSB 4		RF systems	Alan Findlay
LIU-PSB 5		Power Convertors	David Nisbet - Serge Pittet
LIU-PSB 6		Beam instrumentation	Jocelyn Tan
LIU-PSB 7		Beam Intercepting Devices	Oliver Aberle - Alternate Alessandro Masi
LIU-PSB 8		Vacuum System	Jan Hansen
LIU-PSB 9		LINAC4 to PSB transfer line and PSB injection systems	Christian Carli - Wim Waterings
LIU-PSB 10		PSB Extraction system and PSB-PS transfer line	Wolfgang Bartmann - Jan Borburgh
LIU-PSB 11		Controls	Steen Jensen
LIU-PSB 12		Electrical Systems	Davide Bozzini, Slawomir Olek
LIU-PSB 13		Cooling and Ventilation	Mauro Nonis
LIU-PSB 14		Installation, Transport and handling	Ingo Rühl
LIU-PSB 15		Civil Engineering	Luz Anastasia Lopez-Hernandez
LIU-PSB 16		Radiation Protection	Joachim Voltaire
LIU-PSB 17		Machine Interlocks	Bruno Puccio
LIU-PSB 18		Alarms	
LIU-PSB 19		Access Systems - Doors	
LIU-PSB 20		Survey	
LIU-PSB 21		Commissioning and Operation	
LIU-PSB 22		Dismantling	

3 LIU-PS

4 LIU-SPS

- Simone Gilardoni
- Brennan Goddard
WUs dictionary defined for all LIU machines - resources, schedule and deliverables
• Introduction
• Project Management
• **Anticipated Performance Goals**
• Planning
• Summary
Basic assumptions

- Beam parameters are given at injection in LHC: beam loss and blow-up inside the LHC are not accounted for.

- All necessary improvements are implemented in the injectors (Linac4, PSB to PS transfer at 2 GeV, coupled bunch instabilities suppressed, e-cloud suppressed, hardware upgraded...)

- Estimated beam degradation in the accelerator chain (based on observations in 2010):
 - PS: 5% beam loss, 5% transverse blow-up
 - SPS: 10% beam loss, 5% transverse blow-up.

- RF gymnastics being kept, imperfections are unchanged:
 - +10% fluctuation of all bunch parameters within a given PS bunch train.
 - Traces of ghost/satellite bunches.
Beam parameters at LHC injection [50 ns]

Nominal performance

Today (2011)

HL-LHC requirement at 7 TeV

Anticipated performance after LIU

SPS single bunch limit

Constant transverse density (Space charge)

Bunch intensity within constant longitudinal emittance [$x10^{11}$ p/b]
Beam parameters at LHC injection [25 ns]

- **Nominal performance**
- **Today (2011)**
- **Anticipated performance after LIU**
- **HL-LHC requirement at 7 TeV**

Constant transverse density (Space charge)

SPS single bunch limit

Bunch intensity within constant longitudinal emittance [10^{11} p/b]
Introduction

Project Management

Anticipated Performance Goals

Planning

Summary
Comments

LIU performance goals in terms of beam characteristics at injection in the LHC have to meet the needs of HL-LHC and to be feasible... Subject of active interactions between HL-LHC and LIU teams (2nd joint «Brainstorming» session on January 24, 2012).

MDs until the end of 2012 will help refine the knowledge and understanding of the injectors and check the potential of upgrades.

End 2012/beginning 2013, the performance goals of the LIU project will be specified and the precise list of hardware modifications with their specifications will be issued.
<table>
<thead>
<tr>
<th>Year Range</th>
<th>Linac4</th>
<th>PS injector, PS and SPS</th>
<th>Beam characteristics at LHC injection</th>
</tr>
</thead>
</table>
| 2011 - 2012 | Continuation of construction... | • Beam studies § simulations
• Investigation of RCS option
• Hardware prototyping
• Test of new beam gymnastics
• Design § construction of equipment
• TDR | 25 ns, 1.2×10^{11} p/b, ~ 3 mm.mrad
50 ns, 1.7×10^{11} p/b, ~ 2 mm.mrad |
| 2013 – 2014 (Long Shutdown 1) | • Linac4 beam commissioning | • Modifications and installation of some prototypes in PSB, PS and SPS
• Design § construction of equipment | |
| 2015 - 2017 | • Progressive increase of Linac4 beam current | • Implementation of new PS beam gymnastics...
• PSB modification and connection to Linac4 during extended winter shutdown
• If/when Linac4 connected: progressive increase of PSB brightness with benefits for PS and SPS.
• Equipment design § construction for PSB, PS and SPS
• Beam studies | • Possibly smaller emittance (25 ns) with new PS beam gymnastics...
• Limited gain from Linac4 proper (pending PSB, PS and SPS hardware upgrades) |
| 2018 (Long Shutdown 2) | | • Extensive installations in PSB, PS and SPS
• Hardware commissioning | |
| 2019 –2021 | | • Beam commissioning | After ~1 year of operation: beam characteristics for HL-LHC... |
• Introduction
• Project Management
• Anticipated Performance Goals
• Planning
• Summary
Summary

- The goal of the LIU project is to make the LHC injector complex capable to **reliably** deliver the **higher performance proton and ion beams** required for High Luminosity in LHC until later than 2030.

- Performance for other users will at least be preserved and generally benefit (e.g. high intensity).

- More MDs will take place in 2012 to finalize the hardware modifications and their precise specifications.

- The implementation of hardware modifications will finish during LS2.

All equipment and service groups are concerned!
THANK YOU
FOR YOUR ATTENTION!
Why is today’s beam better than nominal?

Simple! *No more blow-up along the accelerators cascade*...

- **PSB:**
 - Improved (achromatic) optics in the Linac2 to PSB transfer line since 2005

- **PS:**
 - Injection trajectories
 - Working point along the whole cycle
 - Transition

- **PS to SPS:**
 - Transverse matching with better optics in TT2-TT10

WARNING: NO MARGIN LEFT!