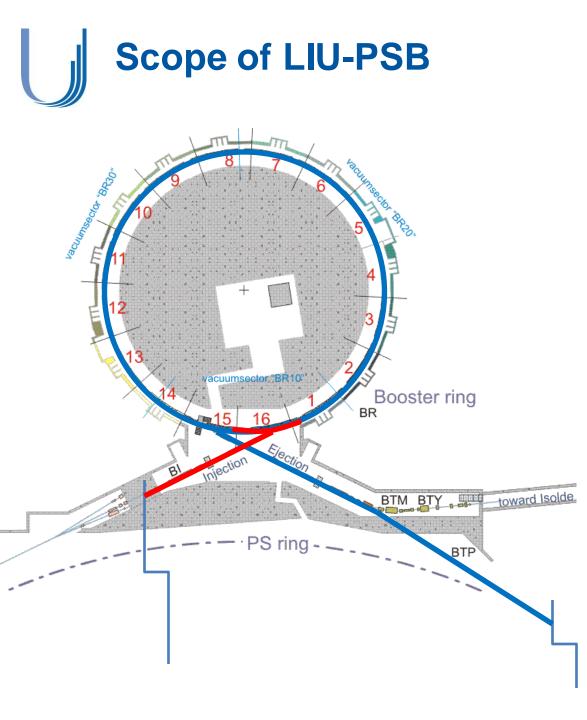


LHC Injectors Upgrade



LHC Injectors Upgrade

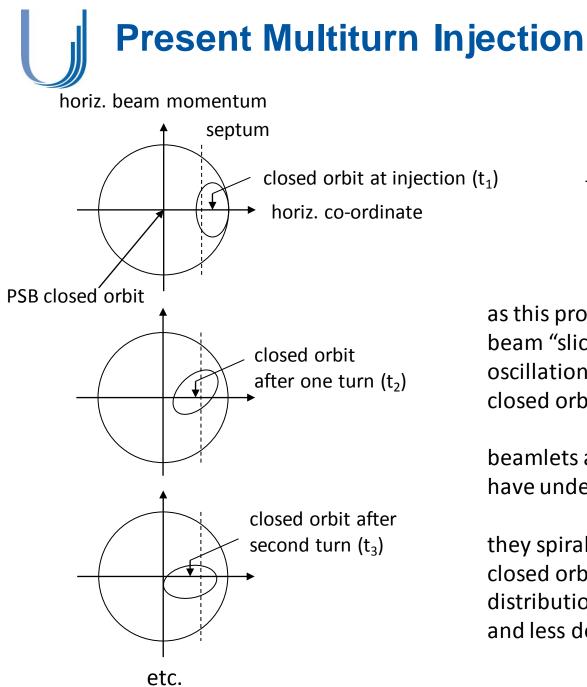
K. Hanke, LIU-2011, 25 Nov 2011

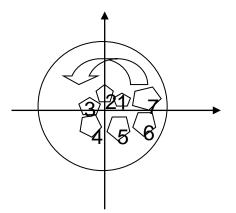
upgrade of the injection from 50 MeV protons to 160 MeV H- and increased intensity

- re-build injection line for 160 MeV
- replace injection septum by stripping foil
- injection bumps
- diagnostics
- •••

upgrade of rings and extraction / transfer from 1.4 GeV to 2.0 GeV and increased intensity

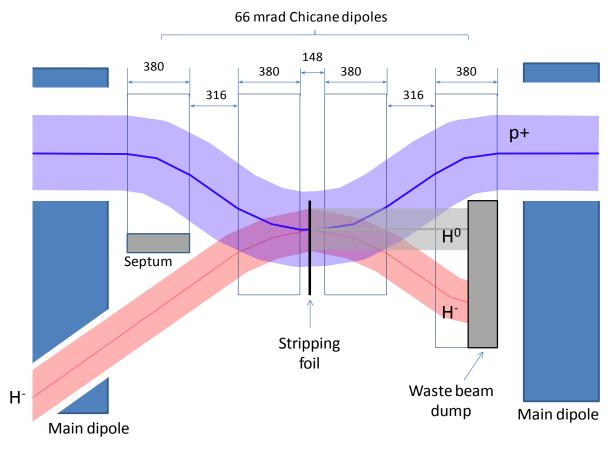
 replace main power supply, number of smaller power supplies, magnets, kickers, etc.


Upgrade of the Injection for Linac4


Why re-building the injection region?

- increased energy from 50 MeV to 160 MeV with Linac4
- \rightarrow reduce space-charge effects at PSB injection
- injection of H- ions rather than protons
- → significantly reduce injection losses (at the moment about 50% of the beam is lost on the injection septum!)
- → more flexibility in tailoring emittances by transverse phase space painting

		Ring	1	Ring 2		Ring 3		Ring 4		Sum		
0	LTB.BCT60	1873		1826		1852		1903		7438		
1	BI.BCT10	1820	97 %	1773	97 %	1831	99 %	1884	99 %	7293	98 %	0
2	BI.BCT20	1640	90 %	1601	90 %	1604	88 %	1654	88 %	6500	89 %	1
3	Injection	1008	61 %	1075	67 %	982	61 %	915	55 %	3981	61 %	2
4	Capture	838	83 %	959	89 %	905	92 %	816	89 %	3519	88 %	3
5	Accel.	631	75 %	918	96 %	871	96 %	693	85 %	3113	88 %	4
6	BT.BCT.00									3121	100 %	5
7	BTP.BCT.00									1	0 %	6
8	BTM.BCT.00									10	0 %	6
9	BTY.BCT112									NaN		6
10	BTY.BCT.213									2910		9
11	BTY.BCT.325									4		9

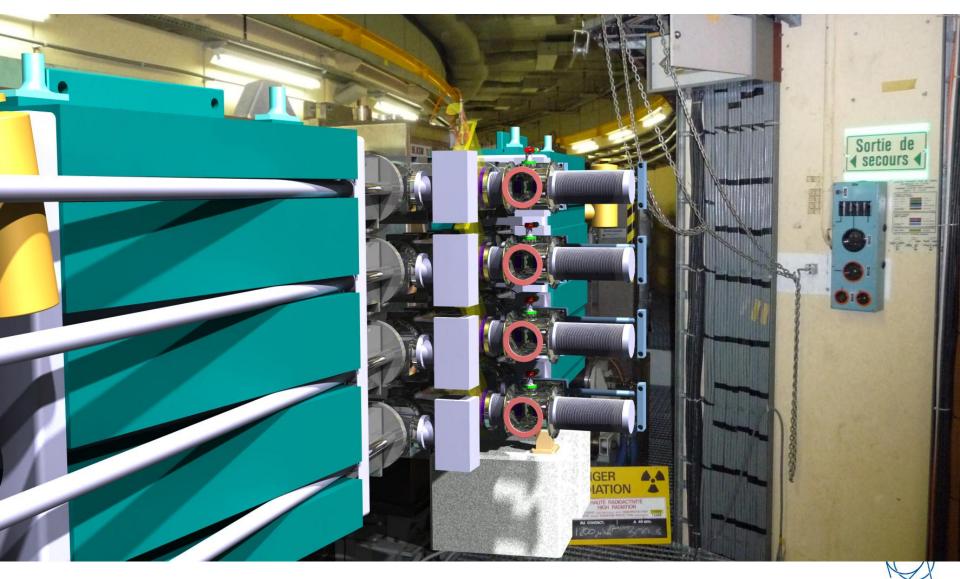

as this process takes place, subsequent linac beam "slices" are injected, with increasing oscillation amplitude around the instantaneous closed orbit ("horizontal stacking")

beamlets are now "polygons", as they have undergone several cuts

they spiral up around the (moving) closed orbit, leading to a density distribution which is dense in the core and less dense in the outer part

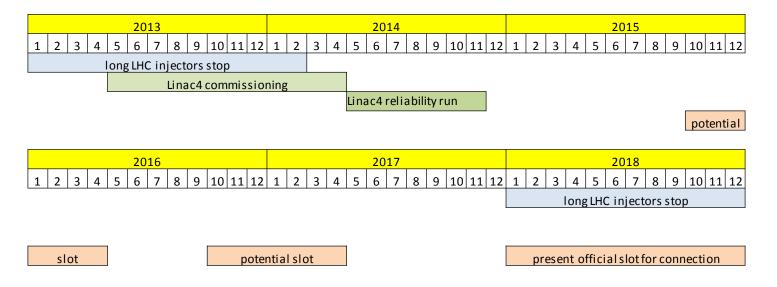
Charge Exchange Injection

more technical details:


ightarrow review held 9-10 November, see

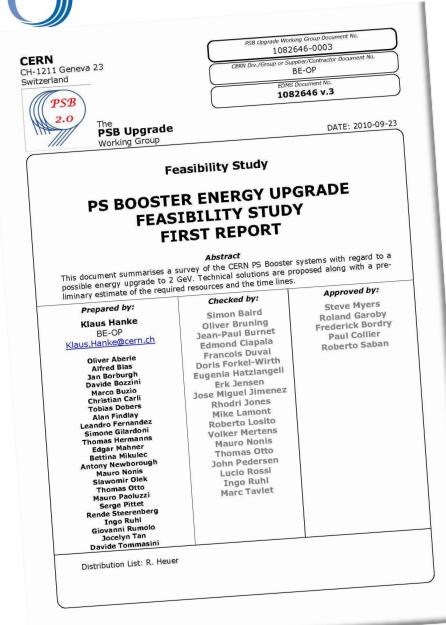
https://indico.cern.ch/conferenceTimeTable.py?confld=158153#20111109

 \rightarrow talk by W. Weterings at this meeting



Present and Future Injection Region

B. Goddard, Review on PSB 160 MeV H⁻ Injection, 9-10 November 2011

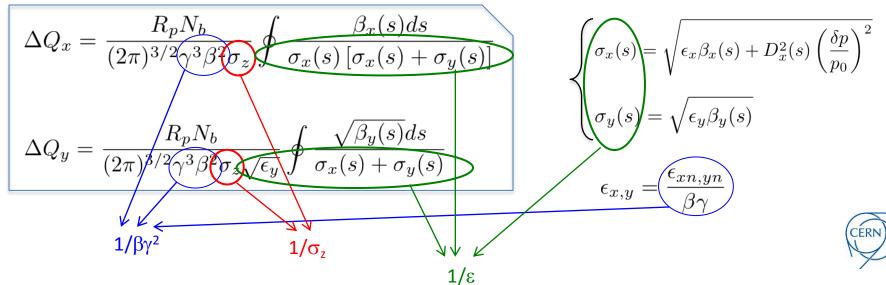

Booster Injection: Planning

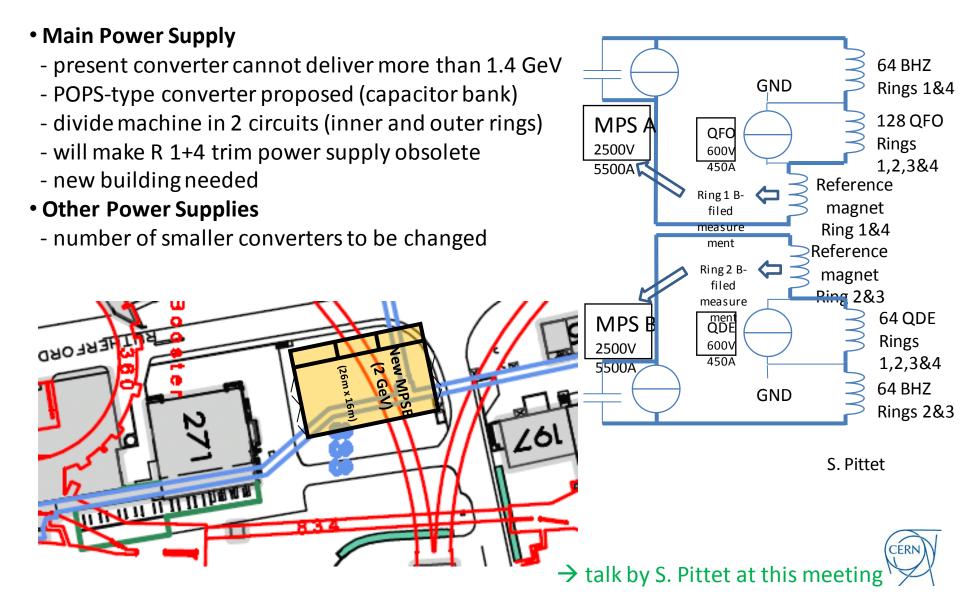
- 1. Connection of Linac4 to the PSB during LS1 ruled out
- Connect to the PSB during an intermediate length shut-down (2015/16 or 2016/17)
- 3. Connect to the PSB during LS2 (assumed 2018)
- 4. Depending on the physics results, there is still a (minor) possibility that LS1 could move

Upgrade of the Booster to 2 GeV

study launched following Chamonix 2010
→ feasibility, cost & time lines confirmed
RCS alternative studied following Chx. 2011
→ Booster option retained

3rd energy upgrade:


- from 800 MeV to 1 GeV (1988)
- from 1 GeV to 1.4 GeV (1999)
- from 1.4 GeV to 2.0 GeV (LS2)
- no technical showstoppers identified
- however a number of equipment and
- systems need to be changed or upgraded
- high-impact items: MPS, RF, kickers, septa, ...


Expected Performance Gain with 2 GeV

- injection at 2GeV lowers space charge effect by a factor (βγ²)_{2GeV}/(βγ²)_{1.4GeV}≈1.63
 → can inject beams ~65% more intense keeping the same space charge tune spread as now
- if we assume to conserve the longitudinal emittance (e.g., 1.3 eVs, LHC beam h=1), the bunch at 2GeV will be 33% shorter at the exit of the PSB, which would in principle limit the above gain to less than 40%; however, the PS bucket acceptance at injection also increases by 50%, which allows for injection of larger longitudinal emittances, recovering the desired gain (50% larger longitudinal emittance required)
- larger transverse emittances acceptable at the PS injection, if the final transverse emittances to the LHC are the same? Unlikely, as the previously PSB specified transverse emittances have meanwhile become the "nominal" LHC emittances!

ightarrow at least 65% intensity increase (within constant emittance) expected

Booster 2 GeV Upgrade: Power

Booster 2 GeV Upgrade: Magnets, Dumps, Transfer

Magnets

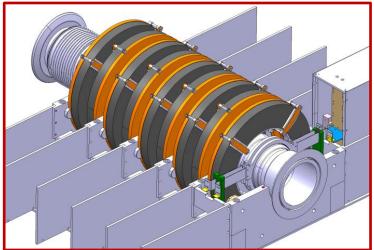
- main dipoles can operate at 2 GeV with some modifications (cooling, retaining plates)
- number of other magnets to be changed

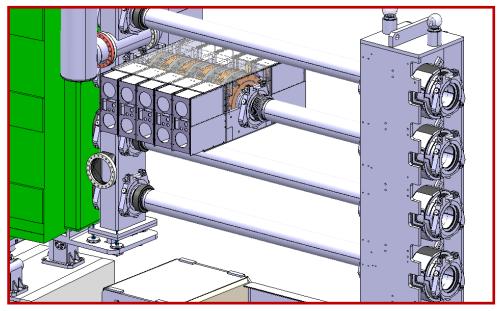
• Beam Intercepting Devices

- new dump and beam stopper being designed
- removal of the old and installation of the new dump being studied for LS1

• Extraction & Transfer

 number of septa/kickers cannot operate at 2 GeV, notably extraction kickers (BE.KFA) and recombination septa (BT.SMV)


Booster main magnet undergoing tests for operation at 2 GeV


A. Newborough, M. Buzio

Booster 2 GeV Upgrade: RF System

- complete upgrade of the Booster high-level RF to new Finemet cavities
- development of a prototype system (collaboration with KEK-RF team)
- installation in PSB during winter stop 2011-2012 approved by IEFC on 7 Oct. 2011
- ightarrow talk by M. Paoluzzi at this meeting

• upgrade program for the LL RF

Finemet cavity test installation in the PSB M. Paoluzzi

Cooling & Ventilation

- refurbishment of cooling station and some distribution piping
- complete refurbishment of existing ventilation plant keeping the same functionalities

• Electrical Systems

- re-design of the system has started

• Other items:

- beam instrumentation, transport, controls, interlocks, design office, vacuum, etc. etc.

for the full picture see

Work-Package	Responsible	Unit
2.Beam Dynamics	C. Carli	BE/ABP
3. Magnets	D. Tommasini, A. Newborough	TE/MCS
4.RF Systems	A. Findlay, M. Paoluzzi, M.E. Angoletta, A	. BE/RF
	Blas, A. Butterworth	
5.Power Converters	S. Pittet, D. Nisbet	TE/EPC
6.Instrumentation	J. Tan	BE/BI
7.Beam Intercepting Devices	O. Aberle, A. Massi	EN/STI
8.Vacuum System	J. Hansen	TE/VSC
9.L4-PSB Transfer and PSB Injection	W. Weterings, C. Carli	TE/ABT, BE/ABP
	L Deskursk M/Deskurser	
10.PSB Extraction and PSB-PSTransfer	J. Borburgn, W.Bartmann	TE/ABT
11.Controls	S. Jensen	BE/CO
12.Electrical Systems	D. Bozzini, S. Olek	EN/EL
13.Cooling and Ventilation	M. Nonis	EN/CV
13.coomg and ventilation		
14.Installation, Transport and Handling	z I. Ruehl, C. Bertone	EN/HE
	, ,	
15.Civil Engineering	L.A. Lopez-Hernandez	GS/SE
16.Radiation Protection	J. Vollaire	DGS/RP
17.Interlock Systems	B. Puccio, P. Dahlen, B. Todd	TE/MPE
18.Alarms		/
19. Access Systems - Doors		/
20.Survey	T. Dobers	BE/ABP
21.Commissioning and Operation	B. Mikulec	BE/OP
22.Dismantling		/

https://espace.cern.ch/liu-project/liu-psb/default.aspx

ID	Task Name	2008 2009 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4	2010 2011 Q1 Q2 Q3 Q4 Q1 Q2 Q					016 20 03 Q4 Q1 Q2	17 Q3 Q4 Q1 C	2018 22 Q3 Q4 Q1	2019 Q2 Q3
1	Operation and Shutdowns		K 0 I			ILI	11.1		<u> </u>		
2	PSB Proton Operation										
10	PSB Shutdown						<u> </u>	<u> </u>			
18	LHC Ion Operation						0				
26	·										
27	WP 2 Beam Dynamics										
31	-										
32	WP 3 Magnets										
54											
55	WP 4 RF System										
56											
	WP 5 Power Converters										
202											
203	WP 6 Beam Instrumentation										
206											
	WP 7 Beam Intercepting Devices										
217	1										
	WP 8 Vacuum System										
225				Í							
226	WP 9 PSB Injection									;	
370										Internet Contraction	
	WP 10 Extraction and Transfer										
417											
418	WP 11 Controls				—						
425											
	WP 12 Electrical Systems										
431											
	WP 13 Cooling & Ventilation										
465	<u> </u>										
	WP 14 Transport and Handling										
480											
	WP 16 Radio Protection, Safety										
489	······								Ť		
	WP 20 Survey										
496	/										
	WP 21 Commissioning and Operation										-
	and epotation		V								-
	1										

- Linac4 connection possible as from end 2015, constrained by LHC stops
- full upgrade including 2 GeV to be completed during LS2

- TDR to be written
- Ongoing MD activity during the next years
- Some work during coming winter stops (removal ion distributor, Finemet test installation, ...)
- Some work to be done during LS1: change of the Booster dump, renovation of handling equipment, ...)
- Most work in LS2 (complete hardware upgrade); if Linac4 connection could be advanced, this would reduce the stress on the intervening groups and on the recommissioning, and is therefore the preferred scenario
- If Linac4 and the 2 GeV upgrade will coincide in LS2, we will have a lot to do

→ We will come out of LS2 with a new Booster

