

Linac4 Status and Planning

M. Vretenar for the Linac4 team

LIU day

4 Linac4 layout and motivations

a quick reminder of what everyone should know...

New 160 MeV H- linear accelerator to replace Linac2 as injector to the PS Booster. First step of the upgrade of the injectors for the LHC Luminosity Upgrade. approved in June 2007, started January 1st, 2008.

Bunch Frequency	352.2	MHz
Max. Rep. Frequency	2	Hz
Max. Beam Pulse Length	0.4	ms
Max. Beam Duty Cycle	0.08	%
Chopper Beam-on Factor	65	%
Chopping scheme: 222	transmitted ,	/133 empty buckets
Source current	80	mA
RFQ output current	70	mA
Linac pulse current	40	mA
Tr. emittance (source	0.25	π mm mrad
Tr. emittance (linac exit)	0.4	π mm mrad
Max. repetition frequency	y for acceler	ating structures 50 Hz

MOTIVATIONS:

- 1. Make possible an upgrade of the LHC luminosity beyond nominal, by reducing space charge at PSB injection (factor 2 in $\beta\gamma^2$ and brightness going from 50 to 160 MeV).
- 2. More modern and sustainable than Linac2 (worries for long-term operation of Linac2).
- 3. Flexible operation and reduced loss with new technologies (chopping, H- injection).
- 4. Higher intensity for non-LHC users.
- 5. Prepare for a possible high-intensity upgrade (neutrino facility).

Search

EVM extraction, 22.11.11

40MCHF earned value (=actual cost) 90MCHF total value. © 45% of the project value achieved

Committed 23 MCHF 70% of the project value achieved or committed.

Good correspondence actual cost/earned value, few months delay

Installation of infrastructure is progressing in building and tunnel

- Electrical distribution, cable trays, piping
- Waveguides
- Faraday cage for electronics
- False floor

Next steps: Cabling campaigns Infrastructure completed by June 2012

J.Coupard 20/10/2011

J.Coupard 20/10/2011

J.Coupard 20/10/2011

Normal-conducting linear accelerator, made of:

- 1. Pre-injector (source, magnetic LEBT, 3 MeV RFQ, chopper line)
- 2. Three types of accelerating structures, all at 352 MHz (standardization of components).
- 3. Beam dump at linac end, switching magnet towards transfer line to PSB.

${}^{\textcircled{\mbox{\scriptsize CP}}}$ No superconductivity (not economically justified in this range of β and duty cycles);		Energy [MeV]	Length [m]	RF Power [MW]	Focusing
Single RF frequency 352 MHz (no sections at	RFQ	0.045 - 3	3	0.6	RF
704 MHz, standardised RF allows considerable cost	DTL	3 - 50	19	5	112 PMQs
[©] High efficiency, high religibility, flexible	CCDTL	50 - 102	25	7	14 PMQs,7 EMQs
operation \rightarrow 3 types of accelerating structures,	PIMS	102 - 160	22	6	12 EMQs
combination of PMQ and EMQ focusing.					
PIMS	CCD		DTL	chopper li	ne RFQ
	tint a ting we				
				1	

86 m

3 MeV TEST STAND for early characterization of lowenergy section; will be moved to Linac4 in 2013

> Ion source and LEBT completed and under test;

> ^{CP}RFQ in construction;

Chopping line completed, tested without beam;

LEP klystron and modulator installed and tested.

Complete beam diagnostics line being assembled.

Beam tests with RFQ from beginning 2012

First measurement campaign completed

(A. Lombardi and her team):
Characterization of beam out of the source
Understanding the behavior of the LEBT
Matching the beam to the RFQ input

Problems with the H- source

11

- 2005: decision to build an RF Volume source based on the DESY design:
 - no resources for an internal development;
 - DESY source had high reliability (external antenna, Cesium-free);
 - higher extraction voltage + improvements to RF generator and matching to achieve higher current: 45 kV, 100 kW for 80 mA (DESY: 35 kV, 30 kW, 30 mA).
- > June 2009: source started in the "3 MeV test stand". Extensive measurements at 35 kV.
- > From May 2010: increase extraction to 45 kV but severe sparking forbids operation.
- Reason: intense electron beam co-extracted with the H- melts the e- dump (up to >200 kW instantaneous power in e- beam!). Vaporization (and destruction) of the dump induces sparking.

DESY had less electrons (with less voltage) and more H-. A "chemical" reason?

WPIS H⁻ Ion source: staged approach, 2 units each + spare

	#1 Volume source	#2 Surface source	#3 Magnetron	
Operational experience H ⁻ current	DESY 30 mA —	\rightarrow SNS 50 mA -	BNL ? → 80 mA	
Plasma Heating process	2 MHz RF Ext. antenna	2 MHz RF nt. & Ext. antenna	Arc discharge	
Cesiation		Cs-chromate Single deposition:	Cs metal Constant flow	
Cs-Oven test stand		Nov. 2011	Nov. 2011	2 test stands,
Electron / H ⁻ ratio	10-100	10	0.5 - 1	B.357: ion
357 Plasma test stand (operational)	\rightarrow Sept. 2012	2013	2014-2015	source (+LEBT,
3MeV test stand (until Dec-2012) (operational, Bldg. 152)	Jul. 2012- Dec- 2012			diagnostics)
IS test stand (Bldg. 357)		2013	2014	B.152: RFQ and chopper
Linac4, building 400	Jan 2012	Qct 2013	2015	testing

1. Extend and improve the source test stand in Bld. 352 (ex-SPL source test stand).

2. Build quickly an improved RF volume source for 3 MeV and L4 commissioning.

3. Build and optimize a Cesiated RF source for L4 2nd part of commissioning <u>and operation</u>.

4. Study (and build) a magnetron-type source to go to high currents – if needed.

New RF volume source for 3 MeV test stand and initial Linac4 commissioning (no Cesium, improved design and electron extraction to avoid melting of the dump) design completed, construction started

Energy 3 MeV, length 3m, 3 section of 1 m each.
Brazed 4-vane design with simplified shape and cooling, for max. duty cycle 10%.
Construction entirely done at CERN: machining, metrology, brazing (horizontal). CEA (F) contribution for RF design and measurements.
Status: Modules #1 and #2 completed, Module #3 failed the 2nd and last brazing, being redone next week.

Programme: RF tests and conditioning beginning 2012, beam tests with protons March/June 2012.

2.84 ns

Length 3.6 m

Already completed, installed in the test stand and tested without beam.

Chopper: 2 meander-line structures on ceramic substrate.

PSB injection scheme (with energy ramping)

Official schedule

	April	May	June	July	August	Septemb.	October	November	December
RFQ beam commissioning (protons)									
Installation of new ion source									
LEBT beam commissioning (H-)									
RFQ beam commissioning (H-)									
Chopper line beam commissioning									

Emergency backup schedule (in case of delays with the ion source):

	April	May	June	July	August	Septemb.	October	November	December
RFQ beam commissioning (protons)									
Chopper line commissioning (proton)									
Installation of new ion source									
LEBT beam commissioning (H-)									
RFQ beam commissioning (H-)									
Chopper line commissioning (H-)									

Would delay the start of H- tests aimed at addressing potential risks with the new particles

C. Rossi responsible for 3 MeV Test Stand

- Pre-series tank and girder segments supplied by industry.
- Tank Segment T1S1 final machined with high quality from CADINOX
- □ Girder Segments T1S1 and T1S2 pre-machined from two companies
- \Box Girder T1S1 final machining at CERN
- □ High quality drift tube parts from DMP
- Assembly of drift tubes at CERN:
 - E-beam Welding
 - Re-machining
 - Metrology
 - Testing
- Pre-series of 9 drift tubes complete

- Construction at VNIITF (Snezhinsk) and BINP (Novosibirsk) in Russia,
- \Box 3 out of 7 modules are produced,
- Module 2 has been qualified by CERN team in Novosibirsk (5-11 Nov 2011).

- Tank #1 (pre-series) completed and RF conditioned to 1.25 times the design voltage.
- Construction in collaboration with Soltan Institute (Warsaw) and FZ Julich.
- EB welding at Julich qualified, actual production started. Visit to Poland in December.

Structure used for the first time in a proton accelerator!

A low-energy beam (160 MeV) presents some dangers, because an accidental beam loss in a critical position can make a hole in the vacuum chamber

Machine protection requires a sophisticated Beam Interlock System, integrating Linac and PSB

Wire

22

Instrument	number	location	energy	details
Faraday Cup	2	LEBT	45 KeV	only scope
Emittance meter	1 1/2	LEBT, MEBT	45 KeV 3 MeV – 12 MeV	
BPMs	31	MEBT - Booster	3 MeV – 160 MeV L2-Booster transfer	Pos, intensity Phase
SEMGrids	18	LEBT – Booster	45 KeV – 160 MeV	
Transformers	16	LEBT - Booster	45 KeV – 160 MeV	
BSM	1	MEBT - PIMS	3 MeV – 160 MeV	Russian coll
Halo Monitor	1	MEBT	3 MeV	M. Hori (finished)
Wire Scanners	6	MEBT, CCDTL, PIMS	3 MeV – 160 MeV	
BLMs	26	MEBT - Booster	3 MeV – 160 MeV	Positions to be confirmed
Laser Wire tests	1	MEBT - Booster	3 MeV – 160 MeV	l inac 4
Emittance meter at 160 MeV	2	L4Z, LBE	160 MeV	Linuc –
			Flange DN63	

- impressive list of equipment!
- some new designs, to fit in the short available space
- International review on 18-19.11
- doubts on the use of SEMgrids for H- (stripped e- from adjacent wires) >10 MeV

Stepping motor

Linear Drive

Travel: 40 mm /45 deg.

Linac4 commissioning schedule

Connection to the PSB during a long (min. 7 months) LHC shut down after 2014.

Linac4 Ready for connection means:

- 1. Transfer line up to Linac2 wall installed;
- 2. Equipment for connection to LT.BHZ20 ready

End of Linac4 commissioning + some reliability run **(2014)**

25

Connect to the PSB during an intermediate length shut-down $(2015/16 \text{ or } 2016/17) \rightarrow \text{READY IN } 2015$ Option1 a 4-5 month shutdown for upgrading the pixel detector has been asked by CMS for 15/16 or 16/17. We need 7 months for the connection, and if we start during the end-of-year ion run the time should be sufficient. In case of problems with Linac2 connect Linac4 to produce \rightarrow READY AT END 2014 50 MeV protons Option2 degraded PSB performance because of lower peak current, no need to modify LBE/LBS or the LT/LTB lines, minimum additional shielding in Linac2 area. Need to prepare Linac4 transfer line and proton source or stripping. Connect to the PSB during LS2 (2018 or 2019?) Option3 \rightarrow after reliability run, keep the machine ready for connection from end 2015. Depending on the physics results, there is still a (minor) Option4 possibility that LS1 will move (by one year?). In this case, one could connect eq. in 2015.

From minutes of LMC 112, 26.10.11:

Steve Myers answered that there would be a decision on this point (possible connection of Linac4 to the booster) at Chamonix 2012, but that at present the work should continue according to the baseline schedule.

Present baseline schedule:

- Commissioning of Linac4 in 2014;
- Ready to send 50 MeV protons in emergency from 2nd half 2014;
- Ready to connect to PSB in 2015.

Main actions for PSB connection, from the Linac4 side:

- a) install new LBE/LBS measurement lines
- b) improve shielding in Linac2 area
- c) install new connection magnet (BHZ20)

Thank you for your attention

