

LHC Injectors Upgrade

LHC Injectors Upgrade

H⁻ injection in the PSB

Bruno Balhan; Jan Borburgh; Chiara Bracco; Christian Carli; Luis Miguel Coralejo Feliciano; Brennan Goddard; Klaus Hanke; Mike Hourican; Cesare Maglioni; Remy Noulibos; Bettina Mikulec; Chiara Pasquino; Jocelyn Tan; <u>Wim Weterings</u>

Scope of the injection upgrade

- Injection upgrade from 50 MeV protons to 160 MeV H⁻ and increased intensity*:
- re-build injection line for 160 MeV;
- 2. replace injection septum by H⁻ injection system.

* although LIU aims at LHC-type beams, all equipment must be compatible with the highest intensities that can be expected.

New system with rapid exchange "Plug n Play" stack of fast ferrite magnets

15 Magnets currently assembled

Development on new compact UHV 12 kV feedthrough

Vertical Septum BI.SMV

Crucial features are merging dipole (part of injection "chicane") and stripping foil

H- is a negative ion of hydrogen

- Two electrons attached to proton: binding energies -0.75 and -13.6 eV
- Electrons are 'easy' to remove with a thin foil of some μm thickness (efficiency depends on energy and foil thickness).

• Typically 1% of $H^{0,}$ 10⁻⁶ of H^{-}

Shifting the machine orbit with respect to foil (painting) fills machine aperture with beam

Chicane switches off to zero amplitude after injection Intensities/emittances and number of injected turns

• From 1 to 100

PSB H⁻ injection chicane concept

PSB H⁻ injection chicane design BSW 3 & 4 Dipoles **BSW2 Merging Dipoles BSW1 Septa** -**Existing PSB Dipole Magnets** Sa 0 353 Internal H⁰ Dump Vacuum manifold **Stripping Foil System Beam Observation**

BI.BSW Baseline magnet parameters

For 316mm magnetic length

Magnetic Properties	BSW1	BSW2/BSW3	BSW4
Field in the center of the magnet [T]	0.399	0.399	0.399
∫B _y dl at magnet centre [m.Tm]	126	126	126
Electric current [kA]	13.5	13.5	13.5
Field homogeneity [%]	1	1	1
Good field region (h x v) [mm]	85x140	85x196	85x220
R (mΩ)	0.3	0.3	0.32
L (µH)	3.3	4.2	4.7
Number of turns	2	2	2
Mechanical properties			
Physical length [mm]	373	380	380
Septum conductor thickness [mm]	7	n.a.	n.a.
Pole face length [mm]	297.8	301	296
Endplate thickness [mm]	13.6	15.5	12
Yoke cross section [mm]	260x260	390x220	390x220
Aperture [mm]	162x85	218x85	242x85
Water cooling [l/min.]	4	3.4	3.3
Water cooling pressure [bar]	12	12	12

Mechanical integration BI.BSW

Stripping foil mechanism BI.STR

Mechanical integration BI.STR

- The PSB injection needs to be upgraded from 50 MeV protons to 160 MeV H⁻ operation.
- The injection line components have to be modified, or newly built, for a performance increase of 1.9 in ∫B·dl.
- The current SMH septum will be replaced by a H⁻ injection system, consisting of:
 - > 16 newly built BSW injection chicane magnets and powering system;
 - ➤ 4 stripping foil mechanism and motorisation system;
 - > Adequate beam instrumentation: Beam-profile measurement at the foil
 - Visual inspection of the foil
 - H⁰/H⁻ population measurement at the dump
 - Beam Loss Monitors
 - > Internal H^0/H^- dump with cooling system.

from the closing remarks of Review on PSB 160 MeV H- Injection 9-10 November 2011

"The world's most complex ring injection system is about to become more complex..."

"But if anyone can do it, CERN can"

Review board :

M. Plum (Chair), ORNL/SNS D. Johnson, FNAL B. Pine, STFC/RAL/ISIS B. Jones, STFC/RAL/ISIS P. Cruikshank, TE-VSC M. Giovannozzi, BE-ABP D. Tommasini, TE-MSC

LHC Injectors Upgrade

H⁻ injection in the PSB

Thank You for your attention

Bruno Balhan; Jan Borburgh; Chiara Bracco; Christian Carli; Luis Miguel Coralejo Feliciano; Brennan Goddard; Klaus Hanke; Mike Hourican; Cesare Maglioni; Remy Noulibos; Bettina Mikulec; Chiara Pasquino; Jocelyn Tan; <u>Wim Weterings</u>

