H⁻ injection in the PSB

Bruno Balhan; Jan Borburgh; Chiara Bracco; Christian Carli; Luis Miguel Coralejo Feliciano; Brennan Goddard; Klaus Hanke; Mike Hourican; Cesare Maglioni; Remy Noulibos; Bettina Mikulec; Chiara Pasquino; Jocelyn Tan; Wim Weterings
Scope of the injection upgrade

Injection upgrade from 50 MeV protons to 160 MeV H^- and increased intensity*:

1. re-build injection line for 160 MeV;

2. replace injection septum by H^- injection system.

* although LIU aims at LHC-type beams, all equipment must be compatible with the highest intensities that can be expected.
Injection line for 160 MeV

- Remove obsolete BI.DIS Pb
- Modify BI.DIS for 4.3 mrad @ 160 MeV
- New BI.SMV, 4 mm thick septum and 70 mm horizontal aperture for ~165 mrad @ 160 MeV with associated new pulse generator.

- Performance increase of 1.9 in $\int B \cdot dl$ of BI.DVT30, BI.QNO30, BI.QNO40, BI.DVT40.

~0.36 Tm required from BI.BVT for ~175 mrad @ 160 MeV
Proton Distributor BI.DIS

Development on new compact UHV 12 kV feedthrough

Current Situation

New system with rapid exchange “Plug n Play” stack of fast ferrite magnets

15 Magnets currently assembled
Vertical Septum BI.SMV

Future Situation
H- injection concept

Crucial features are merging dipole (part of injection “chicane”) and stripping foil

H- is a negative ion of hydrogen
• Two electrons attached to proton: binding energies -0.75 and -13.6 eV
• Electrons are ‘easy’ to remove with a thin foil of some μm thickness (efficiency depends on energy and foil thickness).
• Typically 1% of H^0, 10^{-6} of H^-
H⁻ injection concept

Shifting the machine orbit with respect to foil (painting) fills machine aperture with beam
H⁻ injection concept

Chicane switches off to zero amplitude after injection
Intensities/emittances → number of injected turns
- From 1 to 100
PSB H⁻ injection chicane design

- BSW2 Merging Dipoles
- BSW 3 & 4 Dipoles
- BSW1 Septa
- Existing PSB Dipole Magnets
- Internal H⁰ Dump
- Vacuum manifold
- Stripping Foil System & Beam Observation
BI.BSW Baseline magnet parameters

For 316mm magnetic length

<table>
<thead>
<tr>
<th>Magnetic Properties</th>
<th>BSW1</th>
<th>BSW2/BSW3</th>
<th>BSW4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field in the center of the magnet [T]</td>
<td>0.399</td>
<td>0.399</td>
<td>0.399</td>
</tr>
<tr>
<td>$\int B_y dl$ at magnet centre [m.Tm]</td>
<td>126</td>
<td>126</td>
<td>126</td>
</tr>
<tr>
<td>Electric current [kA]</td>
<td>13.5</td>
<td>13.5</td>
<td>13.5</td>
</tr>
<tr>
<td>Field homogeneity [%]</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Good field region (h x v) [mm]</td>
<td>85x140</td>
<td>85x196</td>
<td>85x220</td>
</tr>
<tr>
<td>R (mΩ)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.32</td>
</tr>
<tr>
<td>L (μH)</td>
<td>3.3</td>
<td>4.2</td>
<td>4.7</td>
</tr>
<tr>
<td>Number of turns</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mechanical properties

Physical length [mm]	373	380	380
Septum conductor thickness [mm]	7	n.a.	n.a.
Pole face length [mm]	297.8	301	296
Endplate thickness [mm]	13.6	15.5	12
Yoke cross section [mm]	260x260	390x220	390x220
Aperture [mm]	162x85	218x85	242x85
Water cooling [l/min.]	4	3.4	3.3
Water cooling pressure [bar]	12	12	12
Mechanical integration BI.BSW
Injection chicane vacuum components

- BHZ Chamber to be modified (EDMS 1146712)
- Ceramic vacuum chambers
- Racetrack bellows
- Tapered chain clamps
- Ion pumps
- DN150 Valve
- Stripping foil system (separate vacuum system)
- Shielded manifolds
- H^0/H^- dump
- Ion pumps
- Racetrack bellows
- Movement Bellows
- CERN
Stripping foil mechanism BI.STR

Foil “in beam” position

Foil “retracted” position

Valve can now close to isolate system

Change foils

Foil “retracted” position
Three loading cases:
(depending on stripping efficiency)

1) 98% (foil operational)
 Steady-state; 2% H0, 0.8mA, \sim 14.2W

2) 90% (foil degraded)
 Steady-state; 10% H0, 4mA, \sim 8h, \sim 71W

3) 0% (foil accident)
 Transient; \frac{1}{4} Linac4 pulse; 40mA, 100% H+, \sim 500J (interlock after 1 pulse)

Half dump
T due to \frac{1}{4} Linac4 pulse
(bottom view, load case 3)
Mechanical integration BI.STR

Future Situation

BSWs

Existing PSB Dipole Magnets

Vacuum pumping

Stripping Foil System & Beam Observation
Summary

- The PSB injection needs to be upgraded from 50 MeV protons to 160 MeV H⁻ operation.
- The injection line components have to be modified, or newly built, for a performance increase of 1.9 in $\int B \cdot dl$.
- The current SMH septum will be replaced by a H⁻ injection system, consisting of:
 - 16 newly built BSW injection chicane magnets and powering system;
 - 4 stripping foil mechanism and motorisation system;
 - Adequate beam instrumentation: - Beam-profile measurement at the foil
 - Visual inspection of the foil
 - H^0/H^- population measurement at the dump
 - Beam Loss Monitors
 - Internal H^0/H^- dump with cooling system.
Conclusion

from the closing remarks of
Review on PSB 160 MeV H-Injection
9-10 November 2011

“The world’s most complex ring injection system is about to become more complex…”

“But if anyone can do it, CERN can”

Review board:
M. Plum (Chair), ORNL/SNS
D. Johnson, FNAL
B. Pine, STFC/RAL/ISIS
B. Jones, STFC/RAL/ISIS
P. Cruikshank, TE-VSC
M. Giovannozzi, BE-ABP
D. Tommasini, TE-MSC
H⁻ injection in the PSB

Thank You for your attention

Bruno Balhan; Jan Borburgh; Chiara Bracco; Christian Carli; Luis Miguel Coralejo Feliciano; Brennan Goddard; Klaus Hanke; Mike Hourican; Cesare Maglioni; Remy Noulibos; Bettina Mikulec; Chiara Pasquino; Jocelyn Tan; Wim Weterings