INFN-T1 site report

Andrea Chierici, Vladimir Sapunenko On behalf of INFN-T1 staff HEPiX spring 2012

Outline

- Facilities
- Network
- Farming
- Grid and Middleware
- Storage
- User experience

INFN-Tier1: numbers

- 1000 m² room with capability for more than 120 racks and several tape libraries
 - □ 5 MVA electrical power
 - □ Redundant facility to provide 24hx7d availability
- Within May (thanks to new 2012 tenders) even more resources
 - 1300 servers with more than 10000 cores available
 - □ **11 PBytes** of disk space and **14 PBytes** on tapes
 - Aggregate bandwith to storage: ~ 50 GB/s
- WAN link at 30 Gbit/s
 - 2x10 Gbit/s over OPN
 - □ With forthcoming GARR-X bandwidth increase is expected
- > 20 supported experiments
- ~ 20 FTE (currently evaluating some positions)

Facilities

Network

Farming

Computing resources

Currently 120K HS-06 □~9000 job slots New tender will add 31,5K HS-06 □ ~4000 potential new job slots □ 41 enclosures, 192 HS-06 per mobo We host other sites □ T2 LHCb T3 UniBO

New tender machine

2U Supermicro Twin square

- □ Chassis: 827H-R1400B
 - (1+1) redundant power supply
 - 12x 3.5" hot-swap SAS/SATA drive trays (3 for each node)
 - Hot-swappable motherboard module
- Mobo: H8DGT-HF
 - Dual AMD Opteron[™] 6000 series processors
 - AMD SR5670 + SP5100 Chipset
 - Dual-Port Gigabit Ethernet
 - 6x SATA2 3.0 Gbps Ports via AMD SP5100 controller, RAID 0, 1, 10
 - 1x PCI-e 2.0 x16
- AMD CPUs (Opteron 6238) 12 cores, 2,6Ghz
- 2 2tb sata hard disks 3,5"
- 40GB Ram
- 2 1620w 80gold power supply

Issues for the future

- We would like to discuss problems with many-cores architectures
 - □1 job per core
 - □ RAM per core
 - □ Single gigabit ethernet per box
 - Local disk I/O
 - □ Green Computing: how to evaluate during tender procedures

Grid and Middleware

INFN

Middleware status

Deployed several EMI nodes Uls, CreamCEs, Argus, BDII, FTS, Storm, WNs

- Legacy glite-3.1 phased-out almost completely
- Planning to completely migrate glite-3.2 nodes to EMI within end of summer
- Atlas and LHCb switched to cvmfs for software area

□ Facing small problems with both

Tests ongoing on cvmfs server for SuperB

WNoDeS: current status

- WNoDeS is deployed in production for two VOs
 - □ Alice: no need for direct access to local storage
 - Auger: needs a customized environment requiring a direct access to a mysql server.
- Current version of WNoDeS deployed in production is using the GPFS/NFS gateway.

WNoDeS: development

- WNoDeS will be distributed with EMI2
- New feature called mixed mode
 - □ Mixed mode avoids to statically allocate resources to WNoDeS
 - A job can be executed on a virtual resource dynamically instantiated by WNoDeS
 - The same resources (the same hv) can be used to execute standard jobs
 - □ No resources overbooking
 - No hard resource limit enforcement which will be provided using cgroup
- General improvements

Docet (Data Operation Center Tool)

- DB-based webtool designed and implemented internally
- In use at various INFN sites.
 - PostgreSQL, tomcat+java
 - Cmdline tool (rely on XMLRPC python webservice)
- Provides inventory for HW, SW, Actions & docs
- Initially populated by grabbing and cross-relating info from heterogeneous authoritative sources (Quattor, DNS, DHCP, XLS sheets, plaintext files) through a bunch of custom python scripts

Docet (T1 tools)

Cmdline Tools:

- dhcpd.conf handling: preserves consistency (update from/to docet DB to be activated)
- Cmdline query/update tool. It provides:
 - re-configuration data for nagios
 - add/list/update HW failures
 - Support for batch operations (insert new HW, remove dismissed HW)
- We plan to deploy more docet-based configuration tools

Docet (T1 tools)

Admin Locations Components Configurations Administration Devices Network

	101-07	101-09	101-10	101-11	101	13 ^{-t2-new.pn}	ig – KSnaj 101 014	
	42	42	42	42	4	2	42	
	sw-101-07	Tree View						
	40	II CC VICW	ann fach i Colain an Colain an Colain an Colain	Tand Could Indee				
	39	tsm 🔻 🏢 INEN."	Device					
	tsm-hsm-7	DEFAULT fakeroom Sala1						
	tsm-hsm-6							
	diskserv-san-95				Name	gridftp-	Tier3-server	
	diskserv-san-94				Hostame	ds-05-	01	
	34				Position	1		
	33		03-08		Hard Configuration	uration DELL PowerEdge M		
	nagios-storage	► I	▶ 08-02			Shelf 101-02		
	nagios-storage-2	storm						
	tsm-hsm-11	taj P 100-01			Edit Delete			
	tsm-hsm-10							
	diskserv-san-87							
	diskserv-san-86		101-01			Network Connections		
	diskserv-san-80	· · · · · · · · · · · · · · · · · · ·	101-02		HOSTNAME	MA	с	
	diskserv-san-64	rtagio 🕨 🕨	ds-05-01 - gridftp-Tier3-serv	er	ds-05-01	00:	1E:C9:EB:21:B8	
	storm-he-atlas-03	Storm-			COR Lake			
	storm-be-lbcb-03	aridi	ds-05-02 - gridftp-Tier3-serv	<	Capture m	nde Rectano		
	diskserv-san-80	storm 🕨 🗐	ds-05-03 - apfs-Tier3-server					
Ē	tsm-hsm-13		service spice record donter		Groups Associated	Snapshot <u>d</u>	elay: No delay	
	diskserv-san-78		ds-05-04 - gpfs-Tier3-server		NAME			

Storage

Storage resources

- 8.4 PB of on-line disk with GEMSS
 - □ 7 **DDN** S2A 9950
 - 2 TB SATA for data, 300 GB SAS for metadata
 - □ 7 **EMC²** CX3-80 + 1 **EMC²** CX4-960 (1 TB disks)
 - 2012 acquisition: 3 Fujitsu Eternus DX400 S2 (3 TB SATA)
- Servers
 - ~32 NSD servers (**10 Gbps** ethernet) on DDN
 - □ ~60 NSD servers (1 Gbps ethernet) on EMC²
- Tape library SI8500 (14 PB on line) with 20 T10Kb drives and 10 T10Kc drives
 - □ 9000 x 1 TB tape capacity, 1 Gbps of bandwidth for each drive
 - □ 1000 x 5 TB tape capacity, 2 Gbps of bandwidth for each drive
 - Drives interconnected to library and tsm-hsm servers via dedicated SAN (TAN)
 - □ TSM server common to all GEMSS instances
- All storage systems and disk-servers are on SAN (FC4/FC8)

INFA

GEMSS: Grid Enabled Mass Storage System

- Integration of GPFS, TSM and StoRM
- Our choice is driven by need to minimize management effort:
 - □ Very positive experience for scalability so far;
 - Large GPFS installation in production at CNAF since 2005 with increasing disk space and number of users;
- Over 8 PB of net disk space partitioned in several GPFS clusters served by less than 100 disk-servers (NSD + gridFTP);
 - □ 2 FTE employed to manage the full system;
 - All experiments at CNAF (LHC and non-LHC) agreed to use GEMSS as HSM

GEMSS evolution

- New component in GEMSS: DMAPI Server
 - Used to intercept READ events via GPFS DMAPI and re-order recalls according to the files position on tape;
 - "Preload library" is not needed anymore;
 - Available with GPFS v 3 x

Disk-centric system with five building blocks

- 1. GPFS: disk-storage software infrastructure
- TSM: tape management system 2.
- StoRM: SRM service 3
- TSM-GPFS interface 4

Meta-data flow

Data flow

Globus GridFTP: WAN data transfers 5

	IBM components INFN components

GEMSS: Timeline

GEMSS is now used by all LHC and non-LHC experiments in production for all Storage Classes

24-apr-2012

Andrea Chierici

User experience

Resource usage per VO

Jobs

localhost - GridJobs Collection Stats

LHCb feedback

- More than 1 million jobs executed
 Analysis: 600k, Simulation 400k
 - User analysis not very efficient (about 50%): too large bandwidth requested
 - available bandwidth for LHCb will be significantly raised with 2012 pledges
- Stability of the services during last year
 - □ Small fraction of failed jobs
 - Good performance of data access, both from tape and disk

INFI

CMS feedback

- 5 Kjobs/day average (50 Kjobs/day peak)
- Up to 200 TB data transfers per week both in and out
- Recent tests proved the possibility to work with 10 GB files in a sustained way

INFI

Alice feedback

- 6.93×10⁶ KSI2k hours consumed in one year of very stable running
- The cloud infrastructure based on WNoDes provided excellent flexibility in catering to temporary requirements (e.g. large memory queues for PbPb event reconstruction).
- CNAF holds 20% of ALICE RAW data (530 TB on tape)
- All data are accessed through an XROOTD interface over the GPFS+TSM underlying file system

INFI

Questions?