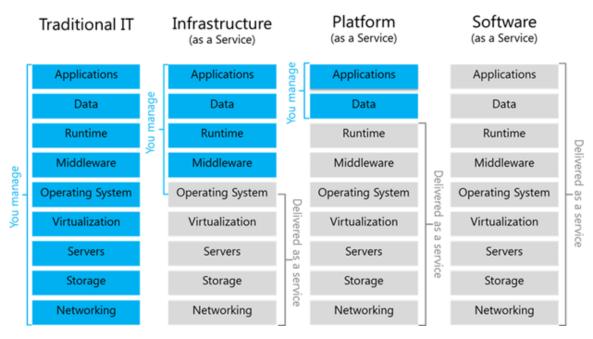


Infrastructure as a Service

Jose Castro Leon CERN – IT/OIS



Cloud Computing

- On-Demand Self-Service
- Scalability and Efficiency
- Resource Pooling
- Rapid elasticity

Infrastructure as a Service

- Objectives
 - 90% of hardware virtualized
 - 300,000 VMs needed
 - Merge the 2 IT evaluation projects in this area
 - Lxcloud & CVI
- Infrastructure as a Service (laaS)
 - More efficient use of our hardware
 - Better tracking of usage
 - Enable remote management for new data centre
 - Consolidate support to a single service
 - Support potential new use cases (PaaS)

Openstack

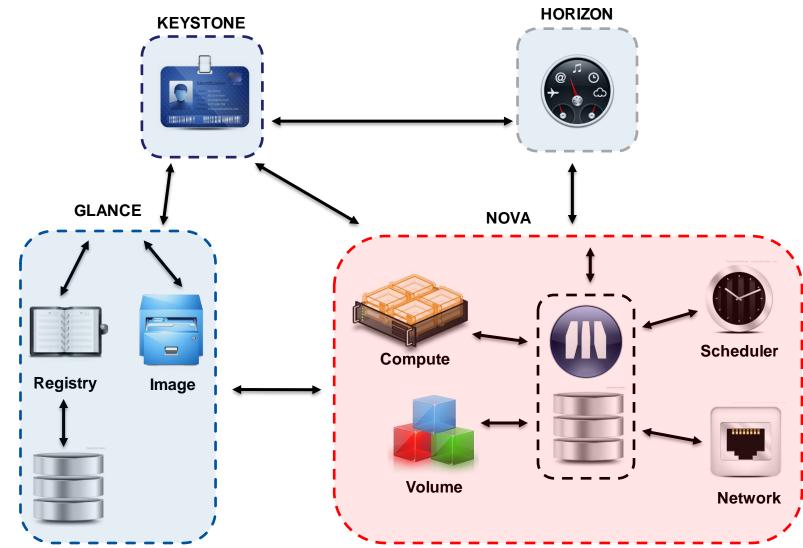
 Openstack provides an operating platform, or toolkit, for orchestrating clouds.

- Features
 - Multi Site
 - Scalable
 - Cloud interfaces
 - Position ourselves as another Cloud Provider

Openstack Community

>150 companies supporting Openstack

Find the complete list at:


http://www.openstack.org/community/companies/

Openstack @ CERN

Nova @ CERN

Nova

- Instance & Volume Management
 - 2 APIs: OpenStack and Amazon EC2
 - Scheduler decides the Hypervisor

Nova @ CERN

- KVM as Hypervisor
- GlusterFS for High Availability
- Integration with existing network DB (LanDB)
 - MAC to IP mapping
 - Instance to Network IP subset mapping

Glance @ CERN

- Images Management
- Configurable storage backend
 - Local Storage
 - Openstack Swift
 - GlusterFS
- Multi-format image registry
 - RAW
 - VHD (Hyper-V)
 - VDI (VirtualBox)
 - QCOW2 (Qemu/KVM)
 - VMDK (VMWare)
 - OVF (VMWare, others)

Keystone @ CERN

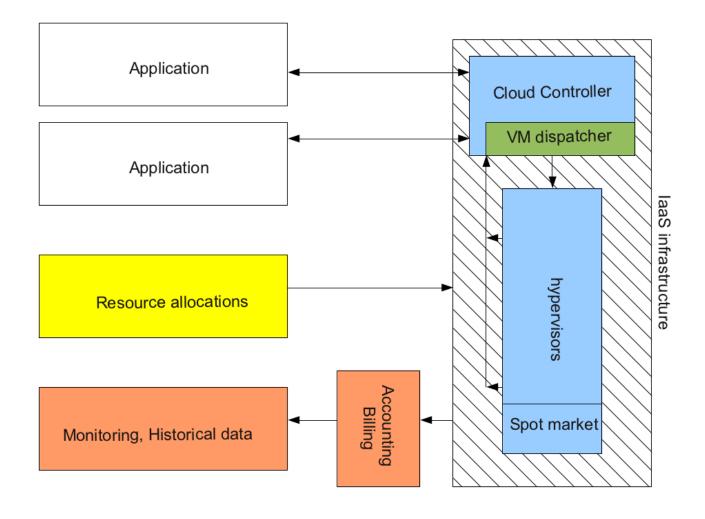
- Cloud Identity Service
 - Authentication
 - Authorization
 - Service Catalog
- Role Based Access Control
- Identity Backends
 - LDAP: Integrate with CERN Active Directory
 - SQL Database possible

Horizon @ CERN

- Graphical UI for Openstack
 - Django application
 - Plug-in architecture
 - Highly integrated with Keystone
 - Self-service for end-users

- Integrate with CERN SSO
 - Shibboleth authentication

Applications


- Different services consume laaS resources
 - Server consolidation, "user VMs"
 - Batch services
 - Pilot frameworks
 - BOINC
- With different requirements (QoS)
 - Management, Storage, Availability, Flexibility
 - Disaster Recovery
- Scheduler is needed for automation
- Monitor the resource usage

Scheduling Architecture

Scheduling & Accounting

- One single entry point for all services
- Decouple applications from the laaS
- Distributed Computer Centre
- Resource usage tracking
 - Hardware usage (CPU, Memory, Disk)
 - Software usage (Process monitoring)
- Auditing & Billing

laaS Configuration

- Production nodes based on SLC6 + EPEL
 - Test deployment based on Fedora 16
- All hypervisors are registered in Foreman
 - Automatic hypervisor provisioning
- Hypervisors use Puppet to configure themselves
 - Puppetlabs modules for Openstack
- CERN Customization
 - Network DB registration

Experiences

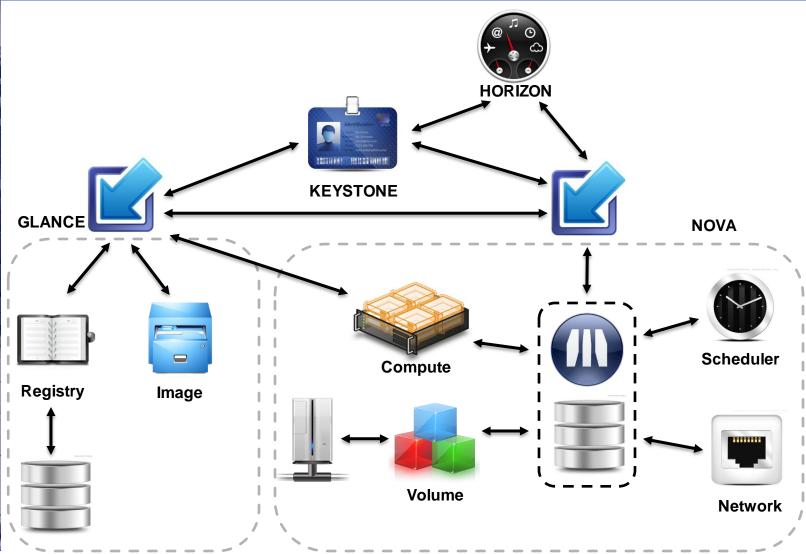
- Maintain the project linked with upstream
- Openstack
 - Participate in Openstack Design Summit
- Fedora
 - RPMs for F16/F17 are quickly released
 - Essex EPEL6 expected end of April
 - Bugzilla, Wiki, IRC: we participate & benefit
 - Essex Test day (March 08) good experience
- Issues
 - Sometimes ahead of upstream

Summary

Agile Infrastructure

- Convergence of our infrastructures and virtual technologies
- Implement specific modules for internal use
- Participate in the Community
- Production ready in time for new Data Centre

Questions



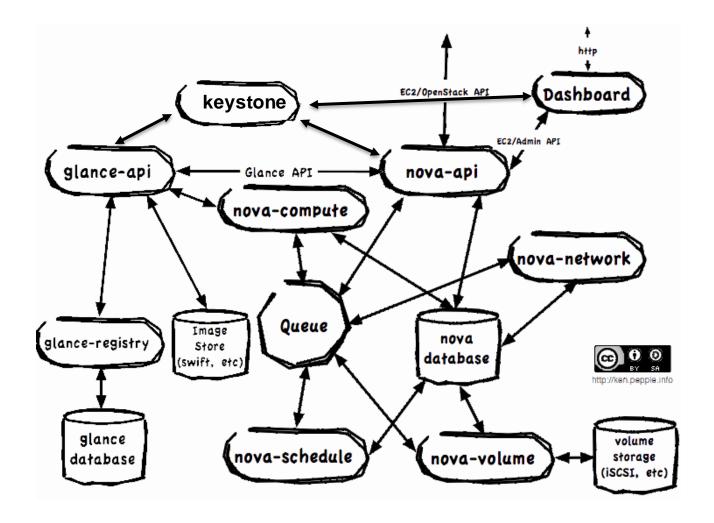
Backup Slides

Openstack Architecture

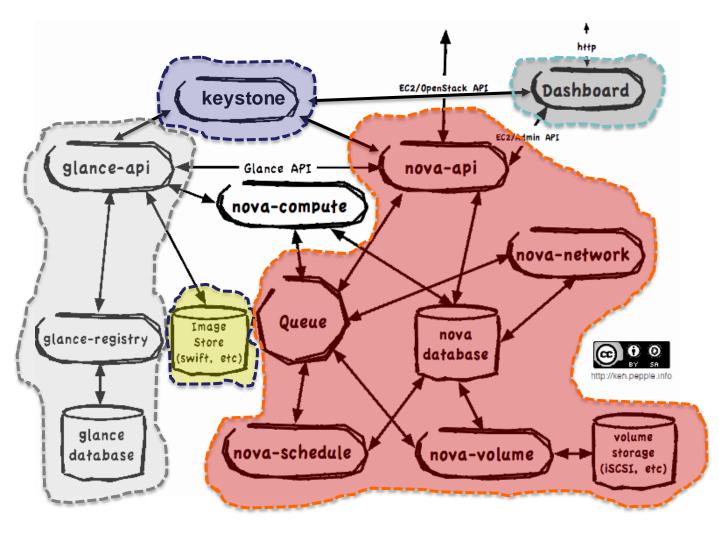
laaS Configuration Use Case

- Hypervisor Configuration Workflow
 - 1. Machine is physically installed and registered
 - 2. It's started by the operator
 - 3. It boots from the network and OS is installed
 - 4. It is configured by Puppet
 - 5. It registers itself to the Cloud Controller
 - 6. It is ready to accept VMs

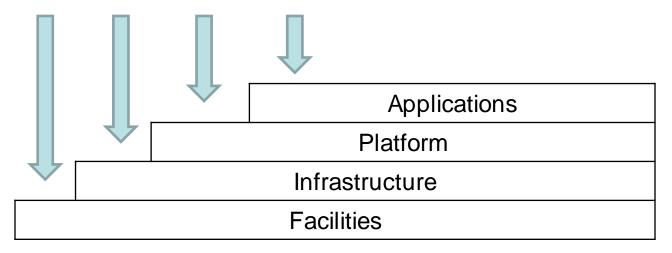
VM Configuration


- Use the same tools as laaS
 - Puppet
 - Foreman
- Instance could be managed or not
 - User decides
- Several OS supported
 - Image selection in Horizon
 - Customization of the image

Openstack Architecture

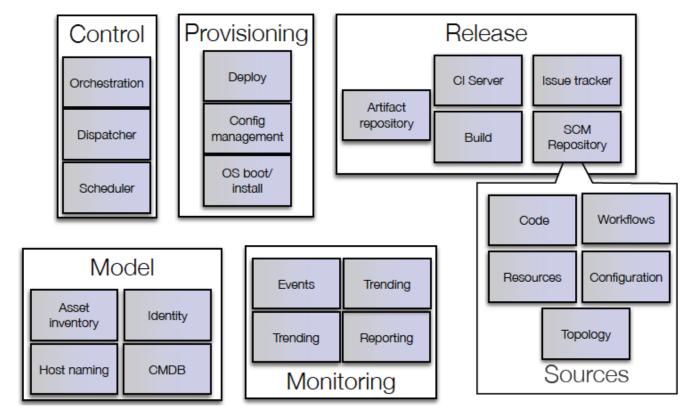


CERN Deployment



Industry Context - Cloud

- Cloud computing models are now standardising
 - Facilities as a Service such as Equinix, Safehost
 - Infrastructure as a Service Amazon EC2, CVI or Ixcloud
 - Platform as a Service Microsoft Azure or CERN Web Services
 - Software as a Service Salesforce, Google Mail, Service-Now, Indico
- Different customers want access to different layers
 - Both our users and the IT Service Managers



Industry Context - DevOps

 DevOps community adopting tool chains with small tools interlinked for particular functions

laaS Approach Benefits

- More efficient use of our hardware
 - Use machines throughout their lifetime
 - Reduce impact of hardware failure
 - Pack server workload for day/night, batch and I/O intensive workload
- Better tracking of usage
 - Consistent accounting and provisioning
- Enable remote management for new data centre
 - Only 'smart hands' locally
 - System administrator procedures simplified
- Consolidate support to a single service
 - Reach critical mass for coverage
- Easily exploit work done in industry such as load balancers
 - We are not special
- Support potential new use cases
 - PaaS, cloud APIs, bursting

Current situation

- IT has two projects in this area
 - Lxcloud based on OpenNebula providing EC2 services for physics users to validate concepts and test
 - CERN Virtual Infrastructure on Hyper-V providing long lived server consolidation workloads such as desktop replacements, VO Boxes and other production/test/dev workloads
- Neither solution is felt to be ideal from long term self-sustainability and scalability
 - O(300K) VMs needed
 - Currently two teams of 1.5 FTE each

