
Monitoring at GRIF

Frédéric SCHAER

Frederic.schaer .@. cea.fr

Hepix Workshop, April 27. 2012

Highlights

• Monitoring Software

• Monitoring Architecture

• Lessons learnt

• Foreseen evolutions

Monitoring Software

• Used in the past

– Lemon, nagiosgraph

• In use now

– Nagios+nrpe+pnp+rrdcached, ipmi, pakiti,cacti,
custom graphing scripts, and since 2011 : parts of
check_mk

– Vendor HW monitoring sensors : using nagios
checks

Monitoring Architecture

• Constraints

– Multiple physical locations : CEA, LAL, LLR, APC,
LPNHE

– Protocol restrictions : no SSH, firewalls

– Variety of monitored systems and configurations

• Until recently : sl4/sl5/sl6, x86_64, i686

• Various hardware, different capabilities

– Number of admins

• 1000 hosts + 16 admins = many config changes/day

– Quattor

Monitoring Architecture

 User Access :

HTTPS+X509

HTTP+iptables

Reporting

RRD

BIRT

Security Pakiti

Operations

Nagios

Check_mk

Reporting : RRD

Reporting : BIRT

Security

• Pakiti setup

– Every GRIF node runs a cron job, and reports back
to the server at some random time, using SSL

– The server

• periodically downloads RHEL Oval patch definitions

• Computes vulnerabilities on node report

• Displays result to trusted users

Security

Some (rough) operations history

hosts services dependencies Hardware state

2007-2008 : LEMON + Nagios
@GRIF/IRFU only

~100 ~1000 ~1000 KVM Virtual Machine
- Idle

2008-2009 : LEMON + Nagios @
GRIF

~600 ~8000 ~10000 Bi-cpu KVM VM,
quite loaded

2012 : Nagios only @ GRIF 990 19259 35744 4 Cores Opteron, 8GB
Ram – Dying

2012 :
 Nagios @ GRIF/LLR
 Nagios @ GRIF except GRIF/LLR

169
821

3108
16151

5844
29900

8 cores Xeon, Idle
4CPU, busy

Operations

• 2 Nagios servers in GRIF for now
– Running nagios, with MK’s mklivestatus broker

– Independant nagioses : no complex setup

– Generated configuration : quick reinstall

– Mainly using active checks using nrpe

– Mklivestatus exporting data
• using xinetd : firewalled ports : only nagios hosts allowed

• Using unix sockets

– MK’s multisite (mod_python)
• transparently aggregates data

• Efficiently displays data

• Is *fast*, amongst many other things

Operations

Operations

• Nagios/check_mk config
– Automatically generated using quattor information
– No {warning,recovery,flapping,unknown} email
– Uses hosts dependencies (downtimes, network

outages)
– Uses services dependencies (mainly on nrpe)
– Uses the « large setups tweaks » nagios option
– Use rrdcached daemon for PNP
– Required many optimizations (and always will)

• NRPE
– Arguments forbidden
– firewalled

Bonus : nrpe trick

• Compression :

– Nrpe_check output|bzip2 | uuencode

– Nagios check_nrpe |bunzip2 | uudecode

• Compressing check output allows to retrieve
up to ~500K data (with op5 patch)

– Still not enough under high load for check_mk
agents, because of ps output

Operations

• Patched/packaged software (SL5/6 32/64):
 Soft Patch

Nagios startup script : 15min -> 5 min
Allow SELinux

Check_mk Fix X509 SSL+FakeBasicAuth usage
Change instant check retry button timeout
Agents patches (disable ipmi, reduce data size, fix $PATH)
fix hardcoded configuration paths, wrong links

Nrpe Allow up to 64K output (op5 patch)
Create system user/group

Nagios plugins, GRIF
plugins

rrdtool

Lessons Learnt

• Nagios recovery actions must be temporary,
and bugs must be fixed asap.

• What should not happen

– when the almighty nagios crashed) :

– Or when a /dev/null becomes a regular file, or…

B
an

k h
o

lid
ay…

Lessons Learnt

• Nagios is powerful, but has its limits :

– with no patch, restart takes 15 minutes !

– Excessive number of active checks are limited by
the fork capabilities of the server

• more expensive hardware (see evolutions)?

• Monitoring is an ongoing process

– Tests output must constantly be
interpreted/correlated

– Too much monitoring kills monitoring (admins)

– But there’s always a need to monitor more things

Evolutions

• Divide nagios load on multiple and distributed
hardware in GRIF

• Fork issue ?
– Big nagios performance boost when using Hugepages

memory (man libhugetlbfs)… at the expense of nagios
crashes.

– But Hugetlb seems worth investigation

• reduce load with “active” passive checks (using
check_multi ? MK’s check_mrpe ?)

• Many things aren’t monitored yet :
– Memory and cpu cores that just disappear, exotic

filesystems configurations, new services… and more to
come

Evolutions

• Check_mk

– Using check_mk agents and service auto discovery
might help reduce load (passive checks)

– but agents large output is incompatible with huge
server loads

– But some MK’s probes must be tweaked (autofs,
virtual NICs …)

• Rework nagios config generation, so that it
can be shared with the quattor community ?

Questions ?

