

Hardware evaluation 2012

Jiří Horký horky@fzu.cz

25/4/2012

Evaluations on borrowed hardware

- scope of tests limited
- Deduplication solution Fujitsu CS800 S2
- Disk performance scaling on Dell C6145
- Intel Sandy Bridge performance
 - already covered in details by previous speakers!
 - addition: performance/Watt numbers almost 50%
 better than the previous generation of Intel processors

- Big hype about this technology
 - deduplication factors of 1:20+ often advertised
 - some marketing materials even claiming it as a general purpose storage technology
- Performance very data dependent
 - but how much?

- System Fujitsu Eternus CS800 S2
 - 1x IntelE5620 @ 2.40GHz
 - 24GB RAM
 - 10 x 500GB 7200RPM 2.5" SAS drives in RAID6
 - LSI MegaSAS 9260 (rev 05)

- Software:
 - RPM based Linux with restricted shell access
 - Running Quantum software internally (StoreNext filesystem)

Deduplication – test methodology

/dev/zero

Praque 2012

HEP

- 1GB files, 3.8TB in total, pregenerated
- /dev/urandom
 - 1GB files, 3.8TB in total, pregenerated
- ATLAS data sets
 - 10MB-1GB .root files, 4TB in total
- regular backups
 - several full + incremental backups of SQL servers, /home directories, Linux servers..., 2.8TB in total
- virtual machines snapshots
 - daily snapshots of virtual servers, 800GB in total
 - 7x 115GB image file

• NFSv3 used to access the storage

• all zeros (/dev/zero) - "best case"

- avg. load around 10
- network bound
- dedup ratio 1:1045

Deduplication – results II

random data (/dev/urandom) - "worst case"

Hardware 2012

- avg. load around 25
- CPU bound
- dedup ratio 1:1.08

HEPIX

Prague 2012

• ATLAS data sets

• dedup ratio 1:1.07

Prague 2012 Deduplication – results IV

Backup – real data from Networker

HEP

Deduplication – results V

Backup – snapshots of virtual machines

HEP

Prague 2012

- Testing on your real data is a must!
- Performance could be better
 maybe just an entry level configuration?
- Hardly suitable for anything else than backups?

How many disks are needed for 64 core worker nodes?

- especially for analysis
- Hardware:
 - Dell C6145
 - 2x AMD Opteron 6276 (64 cores)
 - 128GB RAM
 - LSI SAS2008 PCI-Express Fusion-MPT SAS-2
 - 1-10 SAS 2.5" 300GB 10kRPM drives in RAID0

- Software:
 - Scientific Linux 5.7, kernel 2.6.18-274.17.1.el5
 - XFS filesystem
 - IO Scheduler: CFQ (default) or NOOP (marked NOOP in plots)
 - Kernel read ahead: 128KiB (default) or 512 KiB (marked **RA** in plots)
- Test cases
 - sequential read/write using dd (bs=512K)
 - simulation of 64 parallel ATLAS analysis job with "new" ordered data files using IOreplay:

http://code.google.com/p/ioapps/

DD sequential read performance

DD sequential write performance

Performance of parallel ATLAS jobs

- IO scheduler settings can have BIG impact on IO performance
 - RAID controllers may have much better knowledge on how to schedule the load
 - but there is no clear winner for all IO patterns!
- Adding more than 8 drives does not help
- 3-4 drives should be sufficient
- What will we do with 128 cores machines?
 - RAID 0 with 8 drives is probably not the right option

Thank you for your attention. Questions?