Protecting ALICE from beam failures failures

A. Di Mauro for the ALICE collaboration

ALICE layout

Simulation studies on radiation environment

From ALICE-INT-2002-28 and ALICE-INT-2001-03

- \bullet "normal" LHC operation: contributions from beam-beam, beam-gas and beam-halo
- Transfer line TI2 close to IP2- ALICE: failures due to injection kicker MKI

MKI failure modes

Energy deposition mapping for one accident

Case 4 (grazing)

- **Region between TDI and ALICE**

. Values in rad

Case 3 (sweep)

Energy deposition mapping for one accident

Case 4 (grazing)

2.2E+03 1.0E+03 1.0E+02 1.0E+01 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 4.5E-07

Largest dose in SPD1 and ITS electronics ~ 100 rad

- **Region inside ALICE**

. Values in rad

Case 3 (sweep)

Summary of simulation studies

Expected doses for10 years ALICErunning

- \bullet Contribution from failure at injection negligible wrt normal detector operation (1% of total), howeve r
	- Are such failure modes and rates still valid?
	- What about other failure scenarios ?

Detector damages

\bullet SPD

- $-$ MKI-grazing: 1 Gy (\sim 5x10⁹ mips/cm² in a single burst) That would not produce crystal defects, however it may induce very large currents (100 mA /pixel), far above electronics specs \rightarrow saturation and LV power supply trip, possible damages to electronics
- According to performed irradiation tests 10¹² mips/cm² could be at the limit…
- \bullet Gaseous detectors (PMD, TPC, TRD, TOF, HMPID, Muon-arm, CPV)

Depending on the (primary and secondary) particle flux \rightarrow discharges inside detector and HV power supply trip, possible accelerated ageing or breaking of sense wires (20 μm diameter)

Thresholds to be verified in each detector__________________________

\bullet During injection:

- only Beam Condition Monitors (+ZDC inhibit and Dipole magnet)
will be active for hardware interlock. option: use V0/T0 if proven be active for hardware interlock, option: use V0/T0 if proven necessary and not affected by noise
- all detectors could be in a configuration of no signal production (low V_{bias} in ITS, HV below gas multiplication in gaseous (low V_{bias} in ITS, HV below gas multiplication in gaseous
detectors, limited HV in PMT's), however ramping down/up could be very slow (30'-60') for some at the beginning
- possibility to be checked: use some detectors at safe settings (LV / HV) to monitor beam losses inside experimental area
- During normal operation:
	- all detectors running
	- hardware interlock from BCM (+ZDC and Dipole Magnet)
	- software interlock from V0, T0, SPD, CTP, ….

Hardware interlock scheme

- ZDC must be moved to its OUT position during beam injection

- ALICE dipole magnet has large effects on the beam and is part of beam optics; beam will have to be dumped in case of dipole magnet failure

- rack C28 (BCM readout board TELL1 and CIBU) and rack X07 in CR4 (power supplies) connected to UPS

Software interlocks

Implementation in DCS and timing info from G. De Cataldo

Software interlocks

- All data exchange and software interlocks will use DIP
- \bullet • Data to LHC (from D. Evans talk at LEADE)
	- Average rates from Central Trigger Processor (CTP) counters
	- Average luminosity = factor x average rates
	- Rates/bunch from CTP interaction records
	- Luminosity/bunch = factor x rates/bunch
	- Position and size of luminous region – fast (online) vertex reconstruction from pixel detectors
- S/W interlocks from ALICE to LHC: Injection-Inhibit, Ready-for-Adjust, Ready-for-Beam-Dump
- S/W interlocks from LHC to ALICE: Adjust-Request, Beam -Dump -Request

Beam Condition Monitors

- ALICE will use 1 cm ² CVD Diamond sensors and signal processing system (TELL1 board) developed by LHCb
- \bullet Four doublets of sensors will be installed in the A side at 15.6 m from IP and four in the C side at 19.08 m from IP
- Expected response time for beam-dump signal is $\sim 2 \ \mu s$ after 40 μs integration time
- Such detectors will be used to provide the BEAM_PERMIT signal to LHC, to dump the beam in case of danger and to monitor the machine background
- H/W procurement under way

H/W interlock system commissioning

- BCM calibration from LHCb or in dedicated test-beam
- \bullet Measurement of normal signal levels for each location and tuning of thresholds: in-situ during Pilot Run, eventually with single beam and with colliding beams (valid also for VO , TO)
- Implementation in ALIROOT and study with simulation the response for normal/good beam and correlation of total current/signal asymmetry with V0, T0, SPD, …
- Long-term: use post-mortem data from all beam dumps to check system failures and refine thresholds

Conclusions

- ALICE has developed a clear concept about on beam protection. It will be implemented in the next 6 months.
- Answers:
	- New simulation for beam losses at IR2 could be needed due to differences in layout wrt other IRs
	- –At the present 10¹² does not seem a Safe Beam for ALICE, further checks are needed

Ackowledgements

- BCM H/W installation: W. Riegler, H. Schindler
- •Luminosity/ background measurements : T. Nayak
- •TTC, CTP: D. Evans
- •Implementation in DCS: G. De Cataldo
- •Dipole Magnet interlock: E. Sbrissa
- ZDC Injection Inhibit: D. Swoboda
- Simulation: A. Morsch, H. Schindler

Luminosity in ALICE

- Luminosity measurements using V0, T0, ZDC (only heavy –ions) and LHC Luminometer (close to ZDC)
- Target values:
	- 3x10 30 cm⁻² s⁻¹ in pp (max, 200 kHz limit as TPC drift time is 90 μs)
	- 1x10²⁷ cm⁻² s⁻¹ in PbPb
- Online luminosity estimated from measured rates
- **Feedback to LHC: needed for beam tuning, optimizing beam conditions and establishing proper running conditions**