

Protecting TOTEM

Mario Deile PH-TOT

12.06.2007

Damage Levels: Roman Pot: Window

Bottom foil of Roman Pot window

Fluka simulation by E. Dimovasili:

<u>Accident Scenario</u>: A nominal bunch (1.1x10¹¹ p) through the bottom RP window

Beam dimensions according to high beta optics at XRP3 ($\beta^*=1540$ m): $\sigma_x = 30 \ \mu$ m, $\sigma_v = 80 \ \mu$ m

 \rightarrow worst case scenario

Damage Levels: Roman Pot: Window

window length = 3.4 cm

Impact on transverse window: $z = 150 \mu m \rightarrow no$ problem Mechanical stress effects not included! TOTEM

Damage Levels: Roman Pot: Window

43 bunches: asynchronous beam dump: at most 1 bunch can hit the RP. (? To be checked) Seems OK for bunches up to 6×10^{10} p.

- $\beta^* = 90$ m: wide beam: RP147: $\sigma_x = 0.4$ mm, $\sigma_y = 0.3$ mm RP220: $\sigma_x = 0.4 \text{ mm}, \sigma_y = 0.6 \text{ mm} \rightarrow \text{much less concentrated}$

156 bunches: asynchronous beam dump: how many bunches can hit the RP?

-
$$\beta^* = 2 \text{ m}, 0.5 \text{ m}$$
: wide beam: RP147: $\sigma_x = 0.3 \text{ mm}, \sigma_v = 0.5 \text{ mm}$

RP220: $\sigma_x = 0.1 \text{ mm}, \sigma_y = 0.3 \text{ mm}$

2808 bunches: asynchronous beam dump: at most 8 bunches can hit the RP. (?) Potentially dangerous even for small bunches.

"Safe beam" (10^{10} p total): OK for RP window.

•Injection (450 GeV):

•Normal running (7 TeV):

RP at 10 σ :

RP retracted \rightarrow less risk another Fluka simulation: 1 full bunch (1.1 x 10^{11} p) $\rightarrow \Delta T \sim 200^{\circ}C$ OK "safe beam" (10^{12} p): $\Delta T \sim 2000^{\circ}C$???

Problem: ΔT does not scale linearly with the charge (specific heat depends on T).

What is the impact of the bunching scheme ?

(1 big bunch vs. several small ones with distance Δt and same total charge)

Thin detectors (300 μ m): damage by heat very unlikely.

Displacement damage by non-ionising energy loss: •independent of HV •expected hardness at 450 GeV and 7 TeV: $\Phi_{max} \sim 5 \ge 10^{14} \text{ p/cm}^2$ •Fluence of 1 full bunch (area within 3 σ_{beam}): worst case scenario: thin beam at $\beta^* = 1540 \text{ m}$: $\Phi_{1 \text{ bunch}} = 6 \ge 10^{13} \text{ p/cm}^2$ damage limit: $\Phi_{max} / \Phi_{1 \text{ bunch}} = 8 \text{ bunches}$ standard scenario: thick beam at $\beta^* = 0.5 \text{ m}$: $\Phi_{1 \text{ bunch}} = 9 \ge 10^{12} \text{ p/cm}^2$ damage limit: $\Phi_{max} / \Phi_{1 \text{ bunch}} = 58 \text{ bunches}$

•Fluence of safe beam at injection (10¹² p total), $\beta^* = 11$ m, E = 450 GeV: $\Phi_{\text{safe beam}} \sim 3 \times 10^{13} \text{ p/cm}^2 < \Phi_{\text{max}}$ OK

RP detectors will be retracted with HV off at injection.

Damage Levels: T2 (GEMs)

- •No dedicated accident studies available
- •Melting: unlikely but not studied

•Ageing: GEMs were tested up to $\Phi = 1.4 \times 10^{13} \text{ p/cm}^2$ without performance loss. Fluence of 1 full bunch at 14 m from IP5: $\beta^* = 0.5 \text{ m}$: $\Phi_{1 \text{ bunch}} = 2.4 \times 10^{12} \text{ p/cm}^2$: OK $\beta^* = 1540 \text{ m}$: $\Phi_{1 \text{ bunch}} = 1.9 \times 10^{12} \text{ p/cm}^2$: OK

Fluence of safe beam at injection: $\Phi_{\text{safe beam}} \sim 10^{13} \text{ p/cm}^2$

T2 will be off during injection.

General problem for studies of injection phase: Optics properties for $\beta^* = 11$ m needed.

Damage Levels: T1 (CSCs)

- •No dedicated accident studies available
- •Melting: unlikely but not studied [main material: 30 mm honeycomb (Nomex)]
- •Ageing: tested by CMS for same gas mixture (NIM A515: 226-233, 2003) up to 0.4 C/cm or 1.3 x 10¹² p/cm² without significant performance deterioration.

 \rightarrow tested fluence is of same order of magnitude as the one of a full bunch.

Problem Diagnostics

•During injection:

- all detectors off \rightarrow diagnostics only from
- BLMs
- BPMs
- radiation monitors fixed in various places on the RP
- •During normal running:
- trigger rates from T1, T2, RP (individual detectors and track coincidences) details of trigger scheme still in preparation; RP trigger rates to be calibrated w.r.t. BLM rates;
- detector currents (read-out frequency still unclear; not on kHz level);
- radiation monitors, BLMs, BPMs.

Protection Strategy

1. Protection of T1, T2

- Detectors placed inside CMS → hopefully protected by CMS's BCMs at z = 1.9 m, r = 4 cm and z = 14.4 m, r = 5 – 29 cm (near T2); to be investigated and to be discussed with CMS
- HV on \rightarrow injection inhibit
- 2. Protection of RP
 - RP has to be out except for "stable beam" or "unstable beam": ensured by interlock system via "user_permit" (first CIBU)
 - HV on \rightarrow injection inhibit
 - Wish: RP movement controlled by collimator supervisor system (agreement still to be concluded) ensures that RP stay always in the shadow of collimators
 - rate too high → retract RP: threshold still undefined;
 beam dump due to high detector rate not foreseen in the beginning.
 Option for beam dump via "user_permit" (second CIBU) reserved for later.

TOTEM

Expected Roman Pot Rates

Estimated signal + background rates \rightarrow gives an idea about orders of magnitude of possible retraction thresholds

Background estimates difficult \rightarrow Only experience will teach the real rates.

Interlock Actions

TOTEM

Prevent injection when

•RP is IN and existing beam should not be dumped, e.g. during normal running;

•Detector HV is on.

To be implemented as a software interlock.

Charged Hadrons:

•Averaged over horizontal detector: $\langle F \rangle = 0.7 \ge 10^{12} \text{ cm}^{-2}$ •Maximum in the diffractive peak (protons with $E \approx 7 \text{ TeV}$): averaged over 2 x 2 mm² bin: $F_{max, 2x2} = 6 \ge 10^{13} \text{ cm}^{-2}$ extrapolated to detector edge (10 σ + 0.5 mm = 1.2 mm from beam centre): $F_{max} = 3 \ge 10^{14} \text{ cm}^{-2}$ Damage factor of 7 TeV protons is 1/10 of 1 MeV neutrons \rightarrow equivalent 1 MeV neutron fluence: $F_{equ} = 3 \ge 10^{13} \text{ cm}^{-2}$

Detectors can survive $F_{equ, det} \sim 1 \times 10^{14} \text{ cm}^{-2}$ corresponding to **3 fb**⁻¹

Neutrons: much lower than charged hadrons:

•Averaged over horizontal detector: $\langle F \rangle = 0.1 \text{ x } 10^{12} \text{ cm}^{-2}$

•Maximum (over 4 x 2 mm²): $F_{max} = 2 \times 10^{12} \text{ cm}^{-2}$

Control of Roman Pots

Michel Jonker, 30.01.2007