Characterization of Silicon n-in-p Pixel Sensors for future ATLAS Upgrades

Christian Gallrapp¹

A. La Rosa², A. Macchiolo³, R. Nisius³,

H. Pernegger¹, R. H. Richter⁴, P. Weigell³

¹CERN

²Université de Genève ³Max-Planck-Institut für Physik ⁴MPI-Halbleiterlabor

29.02.2012

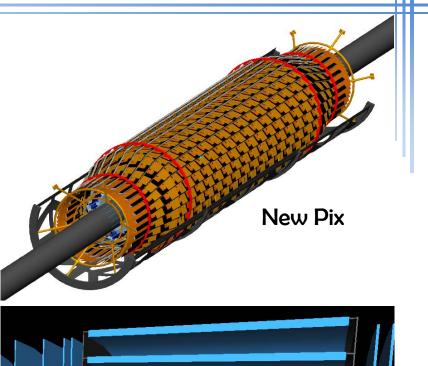
C. Gallrapp - Characterization of Silicon n-in-p Pixel Sensors for future ATLAS Upgrades

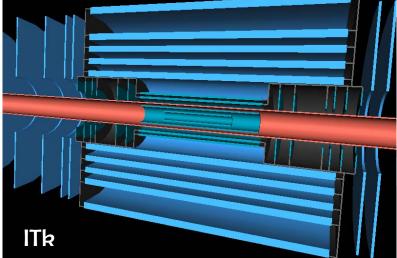
ATLAS Pixel Detector upgrade

2013

- ATLAS Insertable B-Layer (IBL)
 - Planar n-in-n, 3D n-in-p sensors

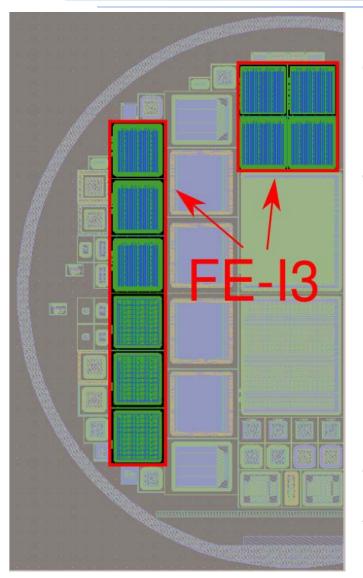
2018


- Phase 1 upgrade: New Pix
 - Full replacement depending on performance (Under discussion)
 - Luminosity: (2-3)·10³⁴ cm⁻²s⁻¹
 - Radiation dose: $5\cdot 10^{15} n_{eq} \text{ cm}^{-2}$ or higher


2022

- Phase 2 upgrade: Inner detector Tracker (ITk)
 - Complete new ATLAS tracker for pixels and strip detectors
 - Luminosity: 5·10³⁴ cm⁻²s⁻¹
 - Radiation dose: 2.10¹⁶ n_{eq}cm⁻²

Planar n-in-p as future sensor technologie


- Excellent candidate for large volumes
- Single-sided processing -> reduced cost.
- Radiation hardness comparable to n-in-n
- R&D based on present ATLAS front-end chip

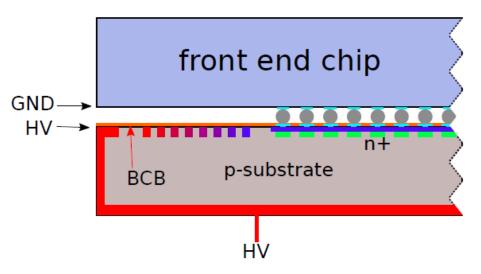
C. Gallrapp - Characterization of Silicon n-in-p Pixel Sensors for future ATLAS Upgrades

CiS-Production

18 Fz n-in-p wafer, 285µm thick delivered by CiS (Erfurt, Germany)

10 FE-I3: Single Chip Modules (SCM) with different guard ring (GR) and isolation schemes:

- 2.8 GRs, homogeneous p-spray
- 2.15 GRs, homogeneous p-spray
- 3. Standard (19) GR, homogeneous p-spray
- 3. Standard (19) GR, moderated p-spray


19 SCMs were built by IZM.

Assembling and wire-bonding done in Bonn.

Benzo Cyclo Butene

Planar n-in-p sensors

- High voltage on the sensor reaches the side facing the front-end chip
- This might cause sparks which would destroy the chip

Possible Solution

- Thin layer of Benzo Clyclo Butene (BCB) to cover the sensor
- BCB provides higher electrical insulation capability than SiO₂

Results

 HV-stability observed several hours at voltages up to 1000V

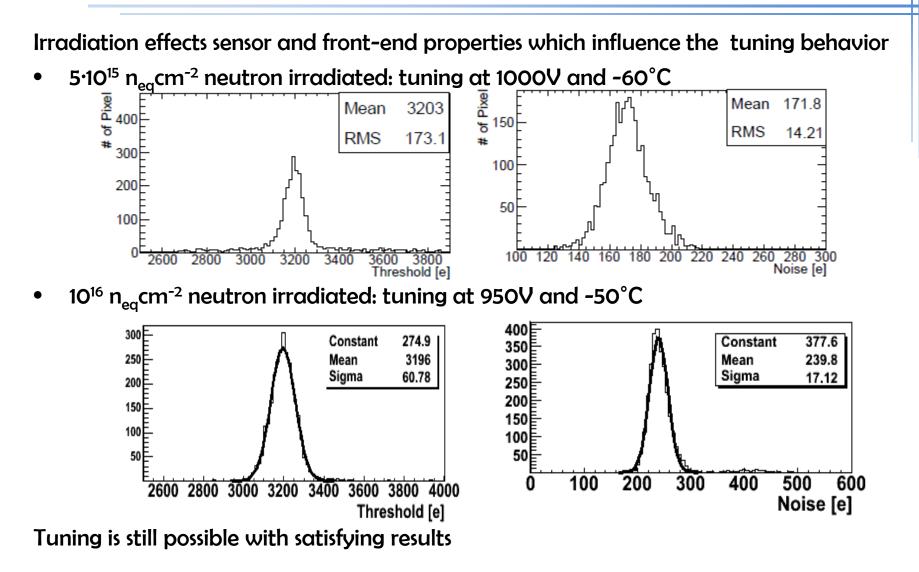
CI\$ FE-I3 RE\$ULT\$

C. Gallrapp - Characterization of Silicon n-in-p Pixel Sensors for future ATLAS Upgrades

Irradiation

CERN (protons 24GeV)

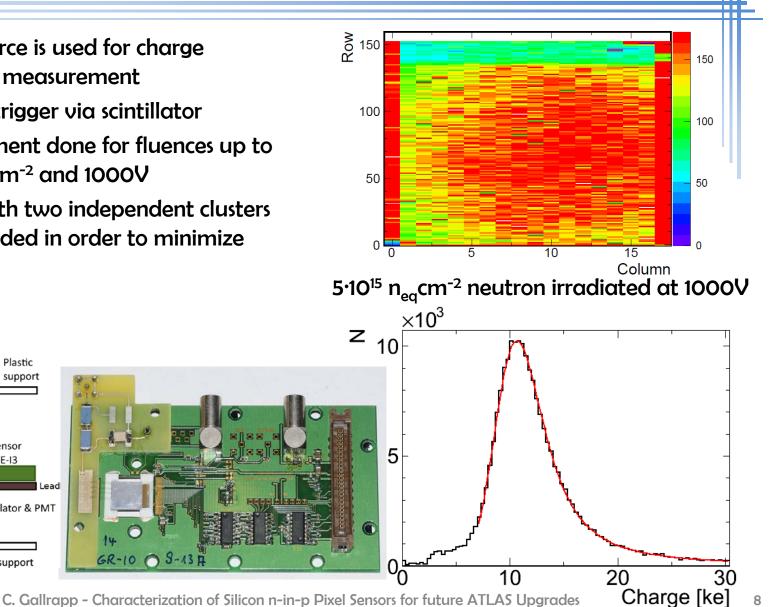
- 1 sensor at 6.2.10¹⁴ n_{ea} cm⁻²
- 1 sensor at 2.5.10¹⁵ n_{eq} cm⁻²
- 1 sensor at 4.4.10¹⁵ n_{eq} cm⁻²
- 1 SCM at 2.8.10¹⁵ n_{eq}cm⁻²
- 1 SCM at 5·10¹⁵ n_{eq}cm⁻²
 Karlsruhe (protons 25MeV)
- 1 SCM at 10¹⁵ n_{eq}cm⁻²

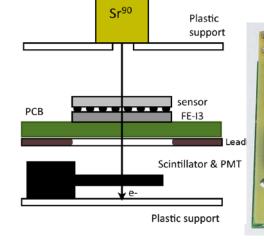

Ljubljana (neutrons)

- 1 SCM at 2.10¹⁵ n_{eq}cm⁻²
- 1 SCM at 3.10¹⁵ n_{eq}cm⁻²
- 1 SCM at 5.10¹⁵ n_{eq}cm⁻²
- 1 SCM at 10¹⁶ n_{eq}cm⁻²

Mixed irradiation (Ljubljana+Karlsruhe)

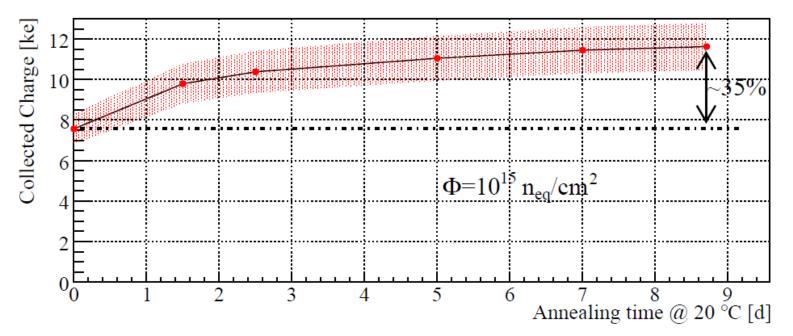
 1 SCM at 10¹⁵ n_{eq}cm⁻² + 10¹⁵ n_{eq}cm⁻²


Tuning of irradiated sample

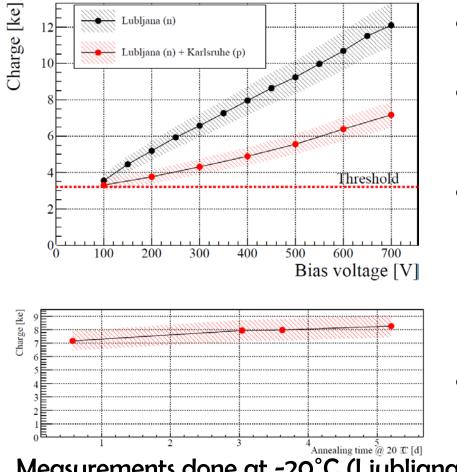


29.02.2012

Sr-90 source tests

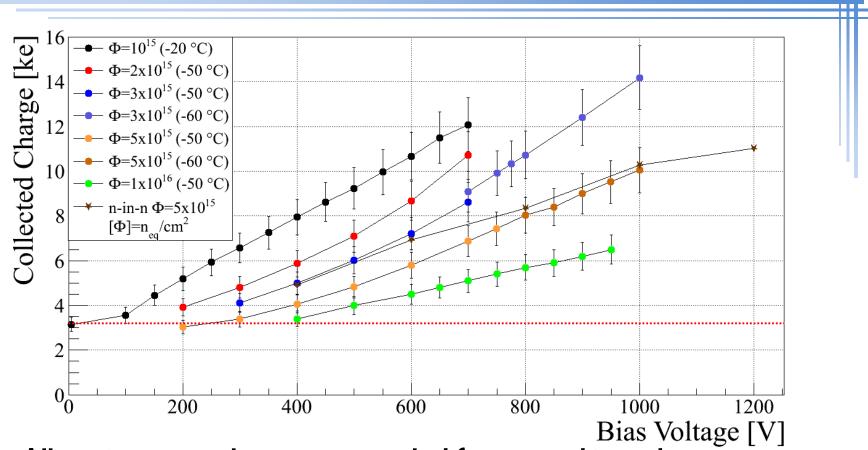

- Sr-90 source is used for charge collection measurement
- External trigger via scintillator
- Measurement done for fluences up to $5.10^{15} n_{ea} \text{ cm}^{-2}$ and 1000 V
- Events with two independent clusters • are discarded in order to minimize noise

Annealing studie


- Proton irradiation at KIT possible with SCM on PCB
- Neutron irradiation needs handling (gluing, bonding) after irradiation (annealing 1-2 days)

• Uncertainties arise from limited knowledge of capacitors used in ToT to charge transformation

Mixed irradiation

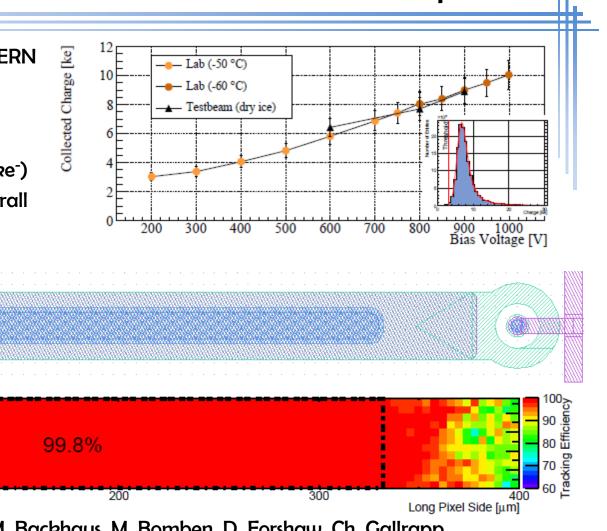

One SCM was twice irradiated : $10^{15} n_{eq} \text{ cm}^{-2}$ (LJ) + $10^{15} n_{eq} \text{ cm}^{-2}$ (KIT)

- Sufficient charge collection
 after irradiation
- Measurements at higher voltages limited by HV capabilities of PCB
- Compared to unirradiated sensors the collected charge at 700V is
 - 65% after irradiation in Ljubljana
 - 39% after both irradiations
- Low noise between 100e⁻ and 120e⁻

Measurements done at -20°C (Ljubljana) and -50°C (Ljubljana + Karlsruhe)

Charge collection

- All neutron samples were annealed for around two days
- Highest leakage currents ~20µA
- n-in-n sample data from S. Altenheiner et al. (doi:10.1016/j.nima.2011.05.074)


29.02.2012

Testbeam results at 5.10¹⁵ n_{eq}cm⁻²

- TB with 120GeV π-beam at CERN
 SPS + Eudet telescope
- Neutron Irradiated Sample (5·10¹⁵ n_{ea}cm⁻²)
- Threshold of 3.2ke⁻ (MPV 6.4ke⁻)
- Efficiency at 600V: 98.7% overall

100

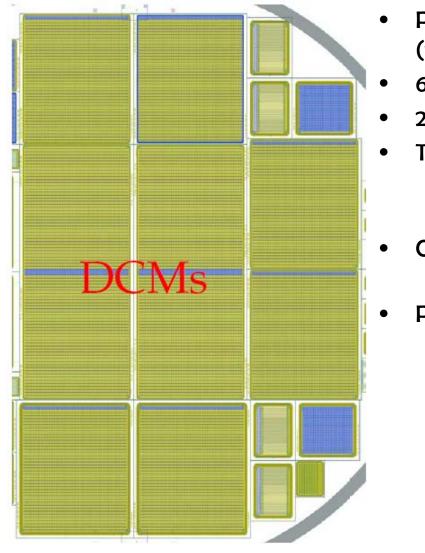
• (99,8% in central region)

TB-Group 2011: S. Altenheiner, M. Backhaus, M. Bomben, D. Forshaw, Ch. Gallrapp,
M. George, J. Idarraga, J. Janssen, J. Jentzsch, T. Lapsien, A. La Rosa, A. Macchiolo, G. Marchiori,
R. Nagai, C. Nellist, I. Rubinskiy, A. Rummler, G. Troska, Y. Unno, P. Weigell, J. Weingarten

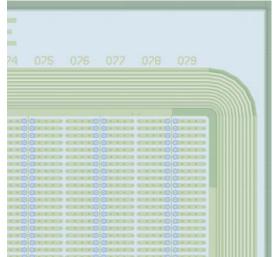
29.02.2012

Short Pixel Side [µm]

40 30


20

10 0


C. Gallrapp - Characterization of Silicon n-in-p Pixel Sensors for future ATLAS Upgrades

NEW CIS FE-14 PRODUCTION

New CiS FE-I4 Production

- Pixel sensors compatible with FE-I4 (new ATLAS read-out chip)
- 6 Single Chip Module
- 2 Double Chip Module
- Thinner bulk: 150µm and 200µm
 - Higher CCE after irradiations.
 - Less material in crucial part of the detector
- Guard-rings are following the IBL design:
 - 450µm inactive edge
- Pitch: 50·250µm²

SUMMARY AND OUTLOOK

C. Gallrapp - Characterization of Silicon n-in-p Pixel Sensors for future ATLAS Upgrades

Summary and outlook

Summary

- SCM properly working up to 10¹⁶ n_{eq}cm⁻²
- Stable operation at 1000V for several hours.
- Charge collection for voltages higher than 600V well above threshold (3.2ke⁻) up to 10¹⁶ n_{eq}cm⁻²
- High efficiency >98% at 5·10¹⁵ n_{eq}cm⁻² already at 600V

Outlook

- Test beam measurements with 10¹⁶ n_{eq}cm⁻² neutron irradiated samples will follow
- Testbeam analysis including tracking efficiency for 10¹⁶ n_{eq}cm⁻²
- Compare results with the new FE-I4 based production which hopefully arrives soon.

Acknowledgements

- A. Dierlamm(KIT) for performing the proton irradiation in Karlsruhe
- V. Cindro and I. Mandic(JSI) for performing the neutron irradiation in Ljubljana
- M. Glaser(CERN) for performing the proton irradiation at CERN
- CERN RD50 Collaboration
- Helmholtz alliance
- ATLAS PPS testbeam crew
- FP7 Research Infrastructures project AIDA
- EUDET people
- CERN SPS North Area teams for their support
- I. McGill(CERN), C. Schlammer(MPP) and W. Dietsche(Uni Bonn) for the wire-bonding
- V. Tromel and L. Poncin(CERN) for the support with radio protection

THANK YOU FOR YOUR ATTENTION