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VELO parameters
for details see Eddy Jans’ talk

RF-foil Y

42 modules with pairs of sensors all n-in-n
— Except one n-in-p (module 0 in later plots) “'EL°'
R/d geometry strip detector .

— Inner most strips are 8mm from the beam, - )
outer most 42mm from the beam $ g

Designed to tolerate 5 years running at
LHC

Sufficiently radiation hard to be used
without modification in a proton therapy
beam at Clatterbridge Oncology centre
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Currently operating with
7 TeV p-p collisions

Small reduction in expected
does per inverse-femtobarn
compared to 14 TeV

Collected about 1.22 fb1 so
farin 2009 to 2011

Both centre-of-mass and
luminosities due to increase
in 2012
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Luminosity [pb]

Currents [mA]

Radiation effects observed
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Most direct
effect: leakage
current increases

Currents measured at
approx —8°C without
beam

Typical increase was
1.9 pA per 100 pbt

Each line is one sensor’s
leakage current at 150V

The red line is the
integrated luminosity
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How effective depletion voltage for one
sensor changes with fluence

Measure EDV during HV scans in data taking by looking at the charge
collection efficiency vs Voltage curves
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A Effective Depletion Voltage / V

Change in depletlon voltage
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Estimate effective
depletion voltage
from charge
collection efficiency
measurements

Compare installation
and current values

Overall 13V to 20V
lower

Binned in radius due
to variation in dose
with radius



Effective depletion voltage

Effective depletion voltage for all sensors
with fluence by radius

Every sensor’s EDV
with colours
indicating the radius
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Effective depletion voltage for all sensors
with fluence by type

Effective depletion voltage vs fluence

n-in-p
sensor

a
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Effective depletion voltage
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LHCb VELO Preliminary

—a— N-type sensors

—a— P-type sensor

The two n-in-p
sensors show a drop
then rise in the EDV
with fluence

[ X1012

30 35 40

neq fluence

David Hutchcroft



90.5™"

Double metal effects

* R and phi sensors need two sets
of metal lines

* One to capacitively couple to the
| strips, the other carrying the
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R sensors route across the outer strips Picture of the outer
' ' ' o edge of the R
i-i\ ~ sensor’s active area

First Metal A - v?
layer on top z
of strips . _ =

. - ) 2 .

Line width ~ 10 um
e
Strip width ~ 38 um

Bond pads

layer running | for links to
_across the strips readout chips




Coupling effects of sighals in R sensors

Before irradiation there was no Routing line from inner R strip

. . . . EE— e <—— irst metal
visible coupling to between inner eryn layer
and outer strips

maplant
: Before

irradiation

bulk

When a signal passes between
the strips both layers of routing P imelant ninn
lines couple to the moving charge

Routlng line from inner R strlp

First metal
layer

Before irradiation free surface

charges can act as a shield as does phant
the 15t metal layer

After irradiation we see phantom p|mplant n-in-n
. . . . sensor
signals in the inner strips

With some
irradiation
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Cluster size for R sensor clusters in ADC

counts for clusters not associated to
tracks

Cluster finding efficiency verse module |
A reduction in the cluster finding

efficiency for the R sensors

Predominately in the forward sensors

and at large radius
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Effects in data taking

Cluster on inner R strips at very low
ADC counts appearing

Predominately at the inner regions of
the sensors, not where tracks crossed
the sensors
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Cluster finding efficiency 2D map for
one R sensor, sensor 40

Cluster finding efficiency verse position on the sensor
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Second metal layer layout for R sensors

Gap in 2" metal
layer and a row
of resistors

Gaps in 2nd 7 | | | R Gaps in 2"
metal layer 7 & b\ metal layer
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Cluster finding efficiency 2D map for
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Conclusions

LHCb VELO detectors do see radiation damage

Type inversion now confirmed for inner edges of sensors close
to beam spot

Leakage currents rising linearly with luminosity

— We now always keep the detector cold to avoid unwanted
annealing

R sensors show coupling to second metal layer causing a
reduction in efficiency

Tracking efficiencies are as yet unchanged (<0.5% effects)

Every reason to believe that we will get five more years out of
these sensors
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Effects of double metal effect on charge collected
iIn ADC counts

No inner cluster

Inner clusters Has inner cluster with routing line
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Parameters of double metal effects

| fraction of inner verse M2 line to track dist(mm) |

LHCb VELO preliminary
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Effects of track position on
coupling to second metal layer

Fraction of tracks impact points with a
fake inner cluster verse distance of track
to closest 2" metal layer
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Fraction of tracks impact points with a
fake inner cluster verse distance of
track to centre line of the strip (1%t
metal layer)
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