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n+-in-p Silicon Sensors 
• Collaboration of ATLAS with 

Hamamatsu Photonics K.K. (HPK) 
• Strip sensors 

– 9.75x9.75 cm2 sensors (6 inch wafers) 
– 4 segments (2 axial, 2 stereo), 1280 

strip each, 74.5 mm pitch 
– FZ <100>, 320 µm thick material 
– Miniature sensors (1x1 cm2) for 

irradiation studies 
– E.g., Y. Unno, et. al., Nucl. Inst. Meth. 

A636 (2011) S24-S30 

• Pixel sensors 
– ATLAS FE-I3  and FE-I4 pixel sensors 
– Biasing: Punch-thru (PT) dot at the  

four-corner or PolySi resister 
– Isolation: p-stop (common, individual) 

or p-spray 
– Miniature sensors with test structures 
– E.g., Y. Unno et al., Nucl. Instr. Meth. 

A650 (2011) 129–135 
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W16 Vdep=234.9

1 kHz with CR 
in Series

Full-size Sensor Evaluation 

• All specifications already met!! 
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Specification Measurement 

Leakage Current <200 µA at 600 V 200– 370nA 

Full Depletion Voltage <500 V 190 – 245V 

Coupling Capacitance (1kHz) >20 pF/cm 24 – 30pF 

Polysilicon Resistance 1.5+/-0.5MΩ 1.3 -1.6MΩ 

Current through dielectric Idiel < 10 nA < 5nA 

Strip Current     No explicit limit < 2nA 

Interstrip Capacitance (100kHz) <1.1pF/cm (3 probe) 0.7 – 0.8pF 

Interstrip Resistance > 10x Rbias~15 MΩ >19 GΩ 

See J. Bohm, et. al., Nucl. Inst. Meth. A, Vol. 636 (2011) 
S104-S110 for details 
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PolySi 

Bias rail 

Biasing 
Scheme 

Isolation scheme 

Novel n-in-p HPK Pixel Sensors 
• n-in-p 6-in. wafer process in HPK 

– ATLAS FE-I3  and FE-I4 pixel sensors 
– Biasing: Punth-thru (PT) dot at 4-corner or 

PolySi resister 
– Isolation: p-stop (common, individual) or p-

spray 
– “Bias rail” is a metal over insulator, no 

implant underneath. No electrode in the 
silicon, other than the bias “dot” 
 

• Thinning 
– Finishing 320 µm wafer process 

first 
– Thinning the wafers to 150 µm 
– Completing the backside  
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HPK n-in-p 6-in. wafer 

FE-I4 2-chip pixels 

FE-I4 1-chip pixels 

FE-I3 1-chip pixels 

FE-I3 4-chip pixels 

FE-I3 (~1cm□) FE-I4 

(~2cm□) 

(a) (b) (c) 

(d) (e) (f) 

FE-I4 pseudo 4-chip pixels 



n+-in-p Benefits and Issues 
• n+-readout in p-type substrate (n-in-p) 

– Collects electrons 
• like current n-in-n pixels 
• Faster signal, reduced charge trapping 

– Depletes from the segmented side 
• Good signal even under-depleted 

– Single-sided process  
• 30-40% cheaper than n-in-n 
• More foundries and available capacity   

world-wide 
– Easier handling/testing 

• due to lack of patterned back-side implant 

• Specific structures 
– Bias structure 
– Isolation structure 
– Issues 

• inefficient area 
• HV breakdown = prevention of 

microdischarge 

• HV protection 
– between the front edge and the ASIC 
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HV protection – Parylene coating 
• Parylene coating 

– Two FE-I3 SCMs  
• After wire-bonding 
• Covering all over 
• Parylene C, ~3 µm 

– Softer Parylene-N might be better (?) 

– I-V measurement 
• Shorted ~700 V 
• Consistent with known shorts in the 

single chip card 
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Parylene coating (C: ~3 µm) 
1.1x1015 1-MeV neq/cm2 

-25 °C, No LV power 

FE-I4 single chip card Coated area 

FE-I3 module 



HV protection – Encapsulation 

• Real pixel sensor (FE-I3) + dummy chip (Al traces) 
– bump-bonded 

• Three types of encapsulation 
– Encapsulation material – Silicone adhesive (soft) 
– No encapsulation (#1), X-points (#2), full line (#3) 
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Weak cross points 

#1: No encapsulation 

#2: Encapsulation of x-points 

#3: Full line encapsulation 



Encapsulation – Spark test 

• Spark occurs 
– ~500 V at X-points without protection 

• good info.  
– ~700 V at Al-traces facing to the sensor edge 

• No open/no passivated trace in the real FE-I4 chips (?) 
– No spark up to 1000 V with full encapsulation 

• We have at least a candidate to protect the edge. 
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Spark location 

Spark location 

#1: Spark location – X-points ~500 V 

#2: Spark location – Al trace ~690 V 

#3: No spark up to 1000 V 



Encapsulation – FE-I4’s testbeam 

• Post-process application 
– Silicon adhesive 
– Both non-irradiated and irradiated single chip modules 

(SCM) 
– successfully operated up to 1000 V in the testbeam 
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Charge Collection in Depth of Sensor 

• 150 µm, n-in-p pixel sensors 
• Open: non-irradiated (NR) 

– FDV ~45 V 

• Solid: 2x1015 neq/cm2 irradiated (IR) 
– FDV ~ 400 V 

• Left: #94-NR, #95-IR, Right: #96-NR and IR 
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Vbias~FDV 



Aftermath of Irradiation 
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Interstrip Resistance 

• Interstrip resistance decreases with fluence 
– What causes the effect? 
– Do we have a quantitative understanding of the source? 
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Isolation voltage =  

Bias voltage to make 

Rint=30 MΩ 

S. Lingren et al., Nucl. Instr. Meth. A636 (2011) S111–S117 

Thesis: M. Yamada 



No gate 

PTP Onset Voltage 
• Onset voltage 

increases 
– Source? 
– Quantitative 

Understanding? 
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Full gate 

Non-irradiated 

1x1013 
5x1012 

1x1014 

1x1015 

Strip 

Bias rail 

Full gate - Irradiated 

10 kΩ 

100 kΩ 

1 MΩ 

~5 mA 

S. Mitsui et al. 

Also see gate effect etc., NP3.M-6, 
C. Betancourt et al., “The punch-
through effect in silicon strip 
detectors” 

PTP - Insurance for 
protecting integrated AC 
coupling capacitors from 
beam splash 
∆V (Implant-Metal) ≤100 V 



Bias Rail Effect – Inefficient area 

• Thin (150 µm) FE-I4 pixel sensors 
• Irradiation (2x1015 neq/cm2) 
• Successful operation up to 1000 V 
• Issue 

– Reduction of efficiency specially 
underneath the bias rail 
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Insensitive Area after Irradiation 

• Underneath the gate (metal) 
seems insensitive after irradiation 
– 20 µm width 
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Y. Unno et al., IEEE TNS 44 (1997) 736-742 

1016.9 +/- 9.5 µm 

992.5 +/- 5.6 µm 

Irradiated: 1x1015 neq/cm2 

Non-irradiated 

995 µm 

1015 µm 

New result from a 

beamtest (Kishida et al.) 



Sensor Edge – Field Width 

• Field width 
– Area with no implantation 

• Top-left fig. 
– Need for a width to hold a bias voltage 

• Top-right fig. 
– Required field width decreases as fluence is accumulated 
– How does this correlate with the surface resistivity? 
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S. Mitsui 



P-stop Potential - TCAD 

• Silicon wafer 
– 320 µm, 3 kΩ cm (=4.7x1012 cm-3) 

• Condition: Non-irradiated  
• Ratio of p-stop potential-to-bias voltage seems stable for the change of the bulk resistivity 
• Y. Unno et al., Nucl. Instr. Meth. A636 (2011) S118–S124 

200 V bias 

75 µm ptich 
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P-stop Potential 

• 75A, B, C, D, E, F 
– 75 µm pitch 
– P-stop width: 6, 15, 30, 45, 6 (Asym), 6 

(Asym) µm 
– Asym: asymmetric location of p-stop 

• Reduction of p-stop potential as a function 
of fluence 
– Interface charge explains this? 
– What else is the source of the change? 

Full depletion voltages 

used 
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S. Mitsui 



Discussion 
• After irradiation, 

– Decrease of the interstrip resistance 
– Decrease of efficiency underneath the bias rail 
– Decrease of the sensitive area underneath the ground 

potential 
– Decrease of the p-stop potential between the n+ strips 
– Decrease of the field width to hold 1000 V 
– Increase of the onset voltage in the PTP structure 

• What is the common source that may have 
caused the above observations? 
– Change of the surface resistivity by radiation damage? 
– Trapping of the electron carriers in the surface? 
– Are these effects already identified in our and/or in 

the semiconductor community (i.e., TCAD program)? 
• If not, how can they be implemented? 
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Summary 
• Nobel n+-in-p silicon strip and pixel sensors have been 

fabricated at HPK successfully. 
• Issues specifically associated with the n+-in-p sensors were 

addressed. 
– Isolation structures that are robust against the bias voltage up 

to 1000 V. 
• Issue: Inefficient area underneath the bias rail 

– HV protection at the edges 
• Low tech. solutions (Parylene coating, Encapsulation), but works 

– Issue: Radiation hardness up to a few x 1016 neq/cm2  

• Performance before and after irradiation has been 
accumulated.  
– We have had a number of evidence that require a fundamental 

explanation.  
• The explanation must be simple if understood (my guess). 

– If you have already had the explanation, let’s have a dinner 
together.  

– We hope to have a quantitative explanation by the next 
workshop. 
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