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Daniel Muenstermann (CERN)

with lots of material from Ivan Peric (U Heidelberg)

Radiation-hard active sensors in 
180 nm HV CMOS technology



Daniel Muenstermann | 7th Trento Workshop on Advanced Radiation Detectors | Ljubljana | March 1st, 2012

A
ct

iv
e 

se
ns

or
s

A
ct

iv
e 

se
ns

or
s

Daniel MuenstermannDaniel Muenstermann
Reminder: fuences at HL-LHC

2

 integrated luminosity: 3000 fb-1 
 including a safety factor of 2 to account 

for all uncertainties this yields for 
ATLAS:
 at 5 cm radius:

 ~2•1016 neq cm-2 

 ~1500 MRad
 at 25 cm radius

 up to 1015 neq cm-2 

 ~100 MRad
 several m2 of silicon
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Implications

 High fuences: trapping dominant
 reduce drift distance, increase feld → reduce drift time:

 3D sensors
 thin silicon
 low depletion depth 'on purpose': 

 low(er) resistivity silicon
 dedicated annealing to increase Neff

 Large areas: low cost of prime importance
 industrialised processes
 large wafer sizes
 cheap interconnection technologies

 Idea: explore industry standard CMOS processes as sensors
 commercially available by variety of foundries

 large volumes, more than one vendor possible
 8” to 12” wafers

 low cost per area: “as cheap as chips”
 (partially too) low resistivity p-type Cz silicon

 thin active layer
 wafer thinning possible
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AMS H18 (and H35) HV-CMOS

 Project initiated and led by Ivan Peric (U Heidelberg)
 Austria Micro Systems offers HV-CMOS processes with 350 and 180 

nm feature size, the latter one in cooperation with IBM
 biasing of substrate to ~100V possible
 substrate resistivity ~20 Ohm*cm → Neff > 1014/cm3

 radiation induced Neff insignifcant even for innermost layers
 depletion depth in the order of 10-20 µm
 on-sensor amplifcation possible - and necessary for good S/N

 key: small pixel sizes → low capacitance → low noise
 additional circuits possible, e.g. discriminator

 beware of 'digital' crosstalk
 full-sized radiation hard drift-based MAPS feasible, but challenging

 aim for 'active sensors' in conjunction with rad-hard readout electronics frst

 Scope of the talk:
 Introduce the concept
 Present frst results with test chips
 Details of a active sensor prototype currently being produced
 Outlook: how small can pixels get?
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A HV-CMOS sensor...

 essentially a standard n-in-p sensor
 depletion zone 10-20 µm: signal in the order of 1-2ke-

 challenging for hybrid pixel readout electronics
 new ATLAS ROC FE-I4 might be able to reach this region – but no margin

HV deep N-well

Depleted

P-substrate

Pixel i Pixel i+1

14 ∝m @ 100V

Not depleted

The depleted high-voltage diode used as sensor (n-well in p-substrate diode)

~1000 e

~1000e

I. Peric
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...including active circuits: smart diode array (SDA)

 implementation of 
 frst amplifer stages
 additional cuircuits: discriminators, impedance converters, logic, …

 deep sub-micron technology intrinsically rad-hard
 triple-well structure 

would improve 
crosstalk-
tolerance

HV deep N-well

P-Well

PMOSNMOS

Depleted

P-substrate

Pixel i Pixel i+1

Not depleted

CMOS electronics placed inside the diode (inside the n-well)

14 µm @ 100V

~1000 e

~1000e

I. Peric
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Prototypes

 Several test-chips submitted in both technologies already

RO chip

Binary information

Analog information

Analog information

SDA with sparse readout
(“intelligent” CMOS pixels)

HV2/MuPixel chip

SDA with frame readout
(simple PMOS pixels)

HVM chip

SDA with capacitive readout
(“intelligent” pixels)

Capacitive coupled pixel 
detectors

CCPD1 and CCPD2 detectors
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Prototype summaries First chip – CMOS pixels

Hit detection in pixels
Binary RO

Pixel size 55x55μm
Noise: 60e

MIP seed pixel signal 1800 e
Time resolution 200ns 

CCPD1 Chip
Bumpless hybrid detector

Based on capacitive chip to chip
signal transfer

Pixel size 78x60μm
RO type: capacitive

Noise: 80e
MIP signal 1800e

CCPD2 Chip
Edgeless CCPD

Pixel size 50x50μm
Noise: 30-40e

Time resolution 300ns
SNR 45-60

PM1 Chip
Pixel size 21x21μm

Frame mode readout
4 PMOS pixel electronics

128 on chip ADCs
Noise: 90e

Test-beam: MIP signal 2200e/1300e
Efficiency > 85% (timing problem)

Spatial resolution 7μm
Uniform detection

PM2 Chip
Noise: 21e (lab) - 44e (test beam)

Test beam: Detection efficiency 98%
Seed Pixel SNR ~ 27

Cluster Signal/Seed Pixel Noise ~ 47
Spatial resolution ~ 3.8 ∝m

Irradiations of test pixels
60MRad – SNR 22 at 10C (CCPD1)

1015n
eq

/cm2 – SNR 50 at 10C (CCPD2)

Frame readout - monolithicBumpless hybrid detector
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CCPD thresholds

 threshold set to about 300 
electrons

 noise extracted from s-curve 
about 23 electrons (!)
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Test beam results

 excellent resolution
 very good S/N ratio
 effciency limited by readout artifacts:

 column-based readout
 column not active during readout
 data analysis did not correct for this
 very small chip → low statistics
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Some irradiated prototype results

 Irradiation with 23 MeV protons: 1e15 neq/cm2, 150MRad
 generally very good S/N ratio
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Some irradiated prototype results

 Irradiation with 23 MeV protons: 1e15 neq/cm2, 150MRad
 FE-55 performance recovers after slight cooling
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From MAPS to active sensors

 Existing prototypes would not suitable for HL-LHC, mainly because
 readout too slow
 time resolution not compatible with 40 MHz operation
 high-speed digital circuits might affect noise performance

 Idea: use HV-CMOS as sensor in combination with existing readout 
technology
 fully transparent, can be easily compared to other sensors
 can be combined with several readout chips
 makes use of highly optimised readout circuits
 can be seen as frst step towards a sensor being integrated into a 3D-

stacked readout chip (not only analogue circuits but also charge 
collection)

 Basic building blocks: small pixels (low capacitance, low noise)
 can be connected in any conceivable way to match existing readout 

granularity, e.g.
 (larger) pixels
 strips ROCPixels
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Pixels

 Possible/sensible pixel sizes: 20x20 to 50x125 µm
 50x250 µm (current ATLAS FE-I4 chip) too large
 combine several sensor “sub-pixels” to one ROC-pixel

 sub-Pixels encode their address/position into the signal as pulse-height-
information instead of signal proportional to collected charge

 routing on chip is well possible, also non-neighbour sub-pixels could be 
combined and more than one combination is possible

Bias A

Bias B

Bias C

FEI4 Pixels

SDA Pixels

Capacitor
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Pixels

 Possible/sensible pixel sizes: 20x20 to 50x125 µm
 50x250 µm (current ATLAS FE-I4 chip) too large
 combine several sensor “sub-pixels” to one ROC-pixel

 sub-Pixels encode their address/position into the signal as pulse-height-
information instead of signal proportional to collected charge

 routing on chip is well possible, also non-neighbour sub-pixels could be 
combined and more than one combination is possible

 Only reason not to use AC coupling with pixel sensors up to now 
was small coupling capacitance in association with low signal
 amplifcation possible, hence AC transmission not a problem at all
 would allow to get rid of costly bump-bonding

Glue

Pixel readout chip (FE-chip)

Pixel CMOS sensor
62.5 or 125 μm

Summing lineTransmitting
plate

Pixel electronics based on charge sensitive amplifier

Bump-bond pad
Coupling 

capacitance
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Strips

 Easiest idea would be 
to simply sum all pixels 
within a virtual strip

 Hit position along the 
strip could be again 
encoded by pulse 
height for analogue 
readout chips (e.g. 
Beetle)

Comparator or ADC

Readout ASIC (such as ABCN) Strip sensor

StripCSA

Wire-bonds

Comparator or ADC

Readout ASIC (such as ABCN) CMOS sensorPixels

CSA

Wire-bonds
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Strips

 Signals are digital so 
multiple connections 
are possible, e.g.
 “crossed strips”
 strips with double 

width but only half 
the pitch in r-phi

Comparator or ADC

Readout ASIC (such as ABCN) CMOS sensorPixels

CSA

Wire-bonds
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Reticule size/stitching

 Sensor size is currently limited by reticule size of ~2x2 cm
 however, the yield should be excellent (very simple circuit, essentially no 

“central” parts) so it might be interesting to cut large arrays of sensors 
from a wafer and connect individual reticules by 
 wire-bonding
 post-processing (one metal layer, large feature size)

 There are HV-CMOS processes/foundries which allow for stitching
 Very slim dicing streets

 Gaps between 1-chip 
modules could be   
rather narrow
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HV2FEI4

 ATLAS institutes submitted a combined active strip/pixel sensor
 pixels match new ATLAS FE-I4 readout chip

 capacitive coupling
 bump-bonding possible

 strips should be compatible 
with ATLAS ABCN and 
LHCb/Alibava Beetle

 chip expected ~end of March
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HV2FEI4

 Chip size: 2.2mm x 4.4mm
 Pixel matrix: 60x24 pixels
 Pixel size 33 µm x 125 µm
 21 IO pads at the lower side for CCPD operation
 40 strip-readout pads (100 µm pitch) at the lower 

side and 22 IO pads at the upper side for (virtual) 
strip operation

 On chip bias DACs

 Pixels contain charge sensitive amplifer, comparator 
and tune DAC

 Pads include:
 Analog power (vdda 1.8V) and preamplifer 

supply 1.2V
 Digital power (1.8V)
 HV bias (-60V)
 Threshold and base line voltages
 Slow control for DACs
 Test pulse (capacitive injection)  
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HV2FEI4

 Sub-pixel positions are 
encoded by 3-level 
pulses
 additive: unique pulse 

heights for all pixel 
combinations

 FE-I4's 4-bit ToT 
should be able to 
disentangle



Daniel Muenstermann | 7th Trento Workshop on Advanced Radiation Detectors | Ljubljana | March 1st, 2012

A
ct

iv
e 

se
ns

or
s

A
ct

iv
e 

se
ns

or
s

Daniel MuenstermannDaniel Muenstermann
HV2FEI4

 Strips readout: z-position encoding via resistor network
 r-phi encoding just “proof of concept” not yet really useful
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Outlook: back to MAPS?

 3 aspects for further improvement:
 reduce pixel sizes further – how far can one go?
 reduce thickness of “module” to save radiation length
 reduce cost for large scale usage of a system with pixel-resolution

 smaller pixel sizes
 go to smaller feature size

 digital part directly scales
 analogue part at least partially

 lower capacitance
 even lower noise
 less preamp-power (but of course more channels)

 interconnect
 no bump-bonding for pixels in the order of 10x10 µm (maybe SLID)
 capacitive coupling, but also here very dense
 go to 3D interconnect? Maybe even 180nm HV-CMOS to 130nm CMOS?
 go towards drift-based MAPS? In the end it's all a CMOS favour...
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CMOS MAPS

 What feature size/pixel size should be used?
 test chips in 350 and 180nm HV-CMOS had different pixel sizes and 

varying levels of intelligence, but were generally not fast enough/did not 
have time stamps with 40 MHz

 FE-I4 in 130nm has a cell size of 50x250 um → probably too large
 65nm aimed for by several chip developers within ATLAS

 suitable as sensor/MAPS?

 65nm process features
 20 Ohm*cm resistivity (!)
 deep n-wells (not as deep as in HV processes, but might do)
 work on 65nm chips has anyway started within ATLAS → synergy
 frst test chip containing tiny pixels (standard n-well) already done:
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65nm test chip

 Tiny pixels (2.5 µm pitch) with charge storage read-out 
sequentially
 obviously not for HL-LHC, but 2.5 µm shows what is 

possible
 1 µm gaps between pixels, ~1V bias voltage (!)
 minimal charge sharing due to very shallow depetion 

zone: Na-22 clusters are 2-3 pixels
 spatial resolution (~binary) of 2.5µm/√12=0.7µm (!!)
 shadow of a 16 µm thick golden bond-wire
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Realistically – what is desirable?

 resolution of tracks in dense jets would be highly welcome for various 
reasons
 very thin depletion zone would help to avoid large clusters at high eta in 

innermost layers
 realistic pixels sizes (area matters, not shape – can be sqare or rectangular)

 ~10x10 µm  with little intelligence, but with LHC-speed, sparse readout, ...
 ~20x40 µm should be able to contain all features one could wish for

 track-trigger applications?
 current ATLAS concepts work with short-strip layers without stereo-angle
 3 double-layers necessary due to fake-rate
 improved resolution (in particular in z) would signifcantly reduce this

 no loss of z-information for tracking purposes
 better track resolution → better spacer thickness/pT resolution ratio

 MAPS-chips could already contain the combination logic

Spacer

Stave with Flex

MAPS-1

MAPS-2
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Conclusions

 HV-CMOS processes might yield radiation-hard, low-cost, improved-
resolution, low-bias-voltage, low-mass sensors

 First test chips indicate rad-hardness up to at least 1e15 neq/cm2

 general principles suggest rad-hardness up to full HL-LHC fuence

 Process can be used for
 'active' n-in-p sensors
 drift-based MAPS chips (baseline for µ3e-Experiment at PSI)

 First active sensor design submitted within ATLAS framework 
 capacitively coupled pixel sensors
 “virtual” strip sensors
 Irradiation and testbeam campaign planned for 2012

 up to HL-LHC fuences
 testbeam at CERN with Timepix telescope

 First test chip in standard 65nm CMOS process
 pixels with 2.5 µm pitch, though no intelligence
 only ~µm depletion, but S/N still good (low capacitance)
 should try deep n-well allowing more bias voltage and some more 

realistic pixel size/intelligence
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