Measurement of the ϕ^* distribution of $Z/\Upsilon^* \rightarrow l^+l^-$ events from DØ

Mika Vesterinen, CERN

Small-x discussion forum CERN, 9th November 2011

Drell-Yan process

- Powerful probe of the PDFs and higher order QCD effects.
- E.g., the p_T distribution is particularly interesting.
 - Calculation requires matching of <u>soft-gluon resummation</u> at for $p_T \le Q$, with fixed order pQCD at larger p_T^{-1} .
 - Implemented in, e.g., ResBos MC program².

J. Collins, D. Soper, G. Sterman, Nucl. Phys. B 250, 199 (1985).
 C. Balazs and C.-P. Yuan, Phys. Rev. D 56 5558 (1997).

NP form factor and interest in small-x

- ResBos includes a non-perturbative form factor.
 - Constrained by global fit to Z and low $Q^2 DY$ data¹.
 - Similar analysis of SIDIS data from HERA².
 - broadening of the form factor at small-x (e.g, $x < 10^{-2}$)?
 - Corresponding to |y| > 2 for Z production at the Tevatron³.

- (1) F. Landry et al., Phys. Rev D 67, 073016 (2003).
- (2) P. M. Nadolsky, D. R. Stump, C.-P. Yuan, Phys. Rev D 64 114011 (2001).
- (3) S. Berge, P. M. Nadolsky, F. I. Olness, C.-P. Yuan, Phys. Rev D 72, 033015 (2005).

DØ pT measurement with I fb^{-I}

- In general agreement with ResBos predictions.
 - Large |y| data are not yet sensitive to small-x effect.
 - Now have 10x more luminosity (x2 if include $\mu\mu$ channel).
 - However, already dominated by experimental systematics*.

*Though still statistics limited in the large |y| region.

ϕ^* variable

- Measure a different observable, e.g., ϕ^* , that is less sensitive to resolution and efficiency effects^{1,2}
 - $\phi^* = \tan(\phi_{acop}/2)\sin\theta^*$, where $\cos\theta^* = \tanh[(\eta^{(1)} \eta^{(2)})/2]$
 - Determined only from angles (good resolution).
 - Less correlated than the p_T with the lepton isolation.

(1) MV, T.R. Wyatt, NIM A 602, 432 (2009)
(2) A. Banfi, S. Redford, MV, P. Waller, T. R. Wyatt, EPJ C 71, 1600 (2011).

$DO \Phi^*$ measurement with 7.3 fb⁻¹

- Measure ϕ^* distribution in 3 bins of |y|
 - 970k events in ee and $\mu\mu$ channels.
 - ResBos is unable to describe the shape at this level of precision.
 - Small-x hypothesis is strongly disfavoured by the |y| > 2 data.

(I) V. M. Abazov et al., PRL 106 12201 (2011).

CERM

Recent phenomenological analysis¹

- State of the art matching of large-log resummation and fixed order.
- Careful treatment of the perturbative uncertainties.
- Within these uncertainties, is there any sensitivity to NP effects at all?

(1) A. Banfi, M. Dasgupta, S. Marzani, L. Tomlinson, arXiv:1110.4009v1[hep-ph] (2011).

Tuesday, 8 November 2011

Backup slides

Tuesday, 8 November 2011

8

$DO \phi^*$ measurement

рт **vs ф***

10

ATLAS/CMS results on the Z/ Υ^* pT

Global Drell-Yan pT analysis

- Paper by Brock, Landry, Nadolsky and Yuan.
 - Tevatron Run I Z data, and lower $Q^2 DY$ data.

$$\tilde{W}_{j\bar{k}}^{\text{BLNY}} = \exp\left[-g_1 - g_2 \ln(\frac{Q}{2Q_0}) - g_1 g_3 \ln(100x_1x_2)\right] b^2$$

(1) F. Landry et al., Phys. Rev D 67, 073016 (2003).

Collins Soper Sterman formalism

• Soft gluon resummation

(1)J. Collins, D. Soper, G. Sterman, Nucl. Phys. B 250, 199 (1985).

Isolation, and a_T

 The a_L component of the p_T is highly correlated with efficiencies to pass cuts on lepton isolation – not for a_T.

(2) а ^{eeeeee}Recoil Same problem at ATLAS/CMS ATLAS L dt = 35 pb⁻¹ ee Data 2010 '//// MC 0.84 10² 10 1 p_{τ}^{ee} [GeV]

- The optimal variable for studying the p_T distribution at hadron colliders
 - $\phi^* = \tan(\phi_{acop}/2)\sin(\theta^*)$, where $\cos(\theta^*) = \tanh[(\eta^-, \eta^+)/2]$.

DØ Run IIa p_T(ee) measurement

DØ Run IIa $p_T(\mu\mu)$ measurement

