Superconducting Magnets for Particle Detectors

Akira Yamamoto (KEK)

Presented at The Roots of the LHC Technology: CERN Centennial Superconductivity Symposium, CERN, 8th December, 2011

11/12/08 A. Yamamoto

SC Magnets for Particle Detectors

Outline

- Progress in SC Magnets for particle detectors
- LHC detector magnets as state-of-art technology
- Toward a dream:
 - Transparent magnetic field
 - Al-stabilized superconductor as a key technology
- Application in space science
- Future prospects

Progress in Superconducting Magnets for Particle Detectors

Progress in Collider Detector Magnets

Experime	ntLab.	В	R (or L)	Е	Х	E/M	Technical Remark	(Year)
		[T]	[m]	[MJ]	[Xo]	[kJ/kg]:		
ISR	CERN	1.5	1.1				Al-soldered to S/C	(1977)
CELLO	CEA/DESY	(1.5	0.85		0.6		Indirect cooling	(1978)
*PEP4	LBL	1.5	1.1		0.83		Cu stab, Q-back	(1983)
CDF	TU/FNAL	1.5	1.5	30	0.84	5.4	AI co-extrusion	(1984)
TOPAZ	KEK	1.2	1.45	20	0.70	4.3	Inner coil winding,	(1984)
VENUS	KEK	0.75	1.75	12	0.52	2.8	CFRP vac. shell,	(1985)
AMY	KEK	3	12	40			Hybrid of Cu/Al stab.	(1985)
CLEO-II	Cornell	1.5	1.55	25	2.5	3.7	Double layer	(1988)
ALEPH	CEA/CERN	1.5	2.75	130	2.0	5.5	Thermo-siphon	(1987)
DELPHI	RAL/CERN	1.2	2.8	109	1.7	4.2	LHe-pump cooling	(1988)
ZEUS	INFN/DESY	1.8	1.5	11	0.9	5.5	Current grading,	(1988)
H1	RAL/DESY	1.2	2.8	120	1.8	4.8		(1990)
(BESS)	KEK	1.2	0.5	1	0.2	6.6	Thin-Al,Pure-Al strip	(1990)
*CMD-2	BINP	1.2	0.36		0.38	5	Current shunting	(1990)
(G-2)	BNL/KEK	1.5	6				One-ring dipole	(1995)
WASA	KEK/Uppsala	1.3	0.25		0.18	6	Thinnest	(1996)
SDC-prt	KEK/Fermi	1.5 (2)	1.85	1.2	9.6	High-st. A	Al, Isogrid (1993)	
CLOE	INFN	1.5	1.x					(1997)
BABAR	INFN/SLAC	1.5	1.5	27				(1997)
D0	Fermi*	2.0	0.6	5.6	0.9	3.7	Conforming of Al	(1998)
BELLE	KEK*	1.5	1.8	42		5.3		(1998)
BES-III	IHEP	1.0	1.45	9.5				(200_)
ATLAS-C	S	2	1.3	38	0.66	7	High St.Al-stabil.	(2001)
ATLAS-BT		1	4.7-9.8	1080			Toroid	(2006)
ATLAS-ET		1	0.83-5.4	2x250			Toroid	(2007)
CMS		4	6	2,600		12	Hybrid conductor	(2005)

Basic Relations with Detector Magnet

Saggita:Deflection:	dp/p ~ {B • R ² } ⁻¹ dp/p ~ {B • R} ⁻¹	•B:	magnetic field
 Magnetic Fi Stored Ener Coil Mass: Pressure: Hoop Stress Wall thicknes E/M ratio: 	eld: $\operatorname{rot} B = \mu_0 J$ rgy: $E = 1/2\mu_0 \operatorname{Int.} B^2 dv$ $M = V_{\operatorname{coil}} \gamma$ $p = B^2/2\mu_0$ s: $\sigma_{\operatorname{hoop}} = (R/t) \cdot p$ ess: $t = (R/\sigma_h) \cdot p$ $E/M = (B^2/2\mu_0) \cdot R/2\gamma$ $= \sigma_h/2\gamma$	• μ_0 : • V_{field} : • V_{coil} : •. γ : •. σ_{hoop} : •R: •t:	magnetic permeability magnetic volume coil volume effective density hoop stress coil radius coil thickness

Superconducting Detector Solenoid Mechanics and Thermal Balance

- <u>Material:</u> t \propto RB²/(E/M) \propto RB² γ / σ_h
 - E/M (Stored Energy/ Cold Mass) to be higher
 - Superconductor to be stronger and lighter
- Stored Energy Absorption in case of Quench
 - Fast quench propagation >> Less thermal stress

Progress of Al-stabilized SC

SC Magnets for Particle Detectors

Status: Collider Detector Magnets CERN-LHC Experiments

Status: Collider Detector Magnets CERN-LHC Experiments

- CMS: solenoid
- Strong and uniform field
- Field inside the solenoid
 - Sagitta measurement
 - $dp/p \sim \{B \cdot R^2\}^{-1}$
- Deflection angle outside the solenoid
 - $dp/p \sim \{B \cdot R\}^{-1}$
- ATLAS: toroid
- Good resolution in forward
 direction
- Saggita and deflection in toroid dp/p ~ {B_φ•R_i • ln(R_i/R_o) / sinθ }⁻¹

11/12/08 A. Yamamoto

CMS High Field and Compact

11/12/08 A. Yamamoto

SC Magnets for Particle Detectors

ATLAS Toroidal Magnet System

width: 44m diameter: 22m weight: 7000t

11/12/08 A. Yamamoto

SC Magnets for Particle Detectors

ATLAS Central Solenoid

Installation of ATLAS Central Solenoid

SC Magnets for Particle Detectors

Solenoid 14

Superconducting Detector Magnets at LHC

Experiment	B ITI	R [m]	E	E/M	Remark
	נין	[111]	[0]]	[KJ/KY]
ATLAS					
CS	2.0	1.25	0.04	7	<u>High-Strength Al</u> Thin solenoid (0.7 Xo)
вт	~1		1.08	3	8 lumped coil in largest single cold mass.
ET	~1		2x0.25	1.6	
CMS	4.0	3.2	2.6	12	<u>Hybrid</u> -conductor Largest store energy

ATLAS CS, BT, and CMS successfully in operation

Energy / Mass Ratio

- Magnetic Field: rot $B = \mu_0 J$
- Stored Energy: $E = 1/2\mu_0 \int B^2 dv$
- Coil Mass:
- Pressure:
- Hoop Stress:
- Wall thickness: $t = (R/\sigma_h)$
- E/M ratio:

$$p = B^{2}/2\mu_{0}$$

$$\sigma_{hoop} = (R/t) \cdot p$$

$$t = (R/\sigma_{h}) \cdot p$$

 $M = V_{\text{and}} \infty v$

$$\mathsf{E}/\mathsf{M} = (\mathsf{B}^2/2\mu_0) \bullet \mathsf{R}/2\gamma$$

magnetic field **B**: permeability μ_0 : V_{field}: magnetic volume V_{coil}: coil volume effective density γ: hoop stress σ_{hoop} : coil radius **R**: coil thickness t:

E/M : Stored Energy / Cold Mass

A Scaling Parameter to optimize Coil Design

Stored Energy to Mass Ratio

18

Radiation Thickness of Various Solenoids

Two Approaches to Stabilization High-Strength Al-Stabilizing

- Reinforcement of Al
 - with keeping low resistivity
- Uniform reinforcement
 - Micro-alloying and cold work
 - ATLAS-CS
- Hybrid reinforcement
 - Welding Al-Alloy with pure-Al
 - CMS

Alloy / Pure-Al / Alloy

Hybrid

Composite structure formed by Micro-alloying and precipitation

High-strength Al-stabilizer

Micro-alloying + Cold-work (area reduction) hardening Ni 0.1 ~ 2 % + 15~20 % Cold-work

CMS with Hybrid Structure (5N-AI/AA6082)

Overall mechanical strength

Y.S.:
130 MPa @ 300 K before curing
180 MPa @ 300 K after curing
(258 MPa @ 4.2 K, estimated)

Tensile Strength Test of CM

Electrical properties of inserts RRR :

3020@ 0 T1134@ 1 T977@ 5 T

B1Claro, Blau. A. Herve, & Mannets for feating Detectors

Progress of AI-Stabilizer Superconductor in Colliding Detector Magnets

24

Further Development for AI-Stabilizer Superconductor

- Energy Frontier Collider Detector
 - Field: > 5 Tesla
 - Scale: Diameter, ~10m
- Further reinforcement
 - ATLAS H.S. stabilizer
 - Ni-0.5 ~ 1 %
 - CMS-Hybrid Support
 - A6058 -->> A7020

Y.S.(0.2%) = 400 MPa RRR = ~ 400

11/12/08 A. Yamamoto

Guide Lines Suggested for Future Detector Magnets (ILC/CLIC)

- NbTi superconductor at Bc = 5 T or smaller,
 - T-margin >> 1 K for reliable operation
- Al-stabilized superconductor
 - High strength Al-stabilizer inevitably important for practical magnet design with E/M ratio of 10-12 kJ/kg
 - Quench protection with ~ 50 % energy extraction.

An Application for Superconducting Muon Storage Ring for Muon G-2 Measurement at BNL

A New muon g-2 Experiment

Pion Capture Solenoids for Intense Muon Beam Experiments

High Intensity Muon Source

for muon-electron conversion experiment: such as: Mu2E, COMET, ...

Requirements on SC solenoid:

- Large acceptance to capture pions
- · High field on the target
- Severe radiation from the target Max. neutron fluence: ~10²¹ n/m²

Irradiation causes:

- Nuclear heating in SC coils
- Irradiation damage in stabilizer, etc.

Aluminum stabilizer

- "Transparent" to particles
 - \rightarrow Lower heat load, smaller bore for shielding
- Perfect recovery from irradiation damage by thermal cycle to room temp.
 - → Stable operation

A Thin Solenoid for Cosmic-ray Observation in Scientific Ballooning over Antarctica BESS-Polar : Bc = 1 T, D = 0.9 m, t = 3 mm, X = 0.1 Xo

<image>

Equivalent mass with <u>1</u> cm thick plastic scintillator

- NbTi superconudctor Al-stabilizer

11/12/08 A. Yamamoto

>> High Magnetis and Hannicle Detectors

AMS developed Al-stabilized SC coil, but not applied in the scientific flight

Toward Higher Field

Al-stabilized Nb3Sn/Nb3Al ٠ 8000 Solenoid beyond 10 T 7000 An R&D expected in ٠ 6000 cooperation with NIFS. Jc(A/mm2) 5000 (4000 3000 2000 1000 0

- The possibility of using NB3Sn/Nb3AI must be investigated

11/12/08 A. Yamamoto

Summary

- There has been great progress in superconducting magnets for particle detectors using Al-stabilized superconductor technology to give the best chance to realize a <u>'transparent magnetic field'.</u>
- The LHC detectors magnets are the result of a successful development program and currently are functioning using state of the art technology.
- NbTi Al-Stabilized superconductor may still be used for future detector magnets when:
 - Useful magnetic field of **5** T as an ultimate field,
 - E/M ratio of < ~ 12 kJ/kg with protection of energy extraction
- Detector magnets beyond 5T require further R&D on Nb3Sn/Nb3AI and HTS conductors.

11/12/08 A. Yamamoto SC

Progress in Detector Magnets

Experiment	Lab.	B [T]	R [m]	Length [m]	Energy [MJ]	X [Xo]	E/M [kJ/kg]:
CDF	Tsukuba/Fermi	1.5	1.5	5.07	30	0.84	5.4
TOPAZ*	KEK	1.2	1.45	5.4	20	0.70	4.3
VENUS*	KEK	0.75	1.75	5.64	12	0.52	2.8
AMY*	KEK	3	1.29	3	40	#	
CLEO-II	Cornell	1.5	1.55	3.8	25	2.5	3.7
ALEPH*	Saclay/CERN	1.5	2.75	7.0	130	2.0	5.5
DELPHI*	RAL/CERN	1.2	2.8	7.4	109	1.7	4.2
ZEUS	INFN/DESY	1.8	1.5	2.85	11	0.9	5.5
H1	RAL/DESY	1.2	2.8	5.75	120	1.8	4.8
BABAR	INFN/SLAC	1.5	1.5	3.46	27	#	3.6
D0	Fermi	2.0	0.6	2.73	5.6	0.9	3.7
BELLE	KEK	1.5	1.8	4	42	#	5.3
BES-III+	IHEP	1.0	1.45	3.5	9.5	#	2.6
ATLAS-Central Solenoid	ATLAS/CERN	2.0	1.25	5.3	38	0.66	7.0
ATLAS-Barrel Toroid+	ATLAS/CERN	1	4.7-9.75	26	1080		
ATLAS-End-cap Toroid+	ATLAS/CERN	1	0.825-5.35	5	2 x 250		
CMS+	CMS/CERN	4	6	12.5	2600	#	12

Momentum Analysis with Magnetic Field

 Bending with magnetic field Deflection:

 $\tan \theta = \sim \theta$ $= L/\rho = e B L/p$

Sagitta:

 $S \sim (1/8) e \cdot B \cdot L^2 / p$ dp/p = ds/s ~ B(L)⁻²

L = 1 m, B = 1 T, L = 1 m, P = 1 GeV/c >> S = .3 ÷ 8 ÷ 1 = 37.5 mm

S = ρ(1-cos θ/2) Taylor Expansion, cos (θ) = 1 - (θ/2)²/2! + (θ/2)⁴/4! S = ~ ρ θ² / 8 = eBL²/8p

11/12/08 A. Yamamoto

SC Magnets for Particle Petertare L²/8 p [B:T, L: m, p: $Ge^{\sqrt{c}}$]

CMS: Solenoidal Field

- Axial, Uniform Field
- Self Supporting
- Iron Return Yoke
- Field inside the solenoid

 Sagitta measurement
 - $-dp/p \sim \{B \cdot R^2\}^{-1}$
- Deflection angle outside the solenoid
 - dp/p ~ {B R} ⁻¹

ATLAS: Toroidal Field

Self Closed Field Field only at Detector Region

Field : proportional to R⁻¹ 6~ 8 coils in practical design Largre field in the coil

Sophisticated support structure to keep self balance

Saggita and deflection $dp/p \sim \{B_{\phi} \cdot R_{i} \cdot \ln(R_{i}/R_{o}) / \sin \theta \}^{-1}$

More Powerful Deflection in forward/backward direction

Basic Relations with Detector Magnet

- Saggita:
- Deflection:
- Magnetic Field:
- Stored Energy:
- Coil Mass:
- Pressure:
- Hoop Stress:
- Wall thickness:
- E/M ratio:

dp/p ~ {B • R²}⁻¹ dp/p ~ {B • R} ⁻¹

rot B = $\mu_0 J$ E = 1/2 μ_0 Int. B² dv M = V_{coil} γ p = B²/2 μ_0 $\sigma_{hoop} = (R/t) \cdot p$ t = $(R/\sigma_h) \cdot p$ E/M = $(B^2/2\mu_0) \cdot R/2\gamma$ = $\sigma_h/2\gamma$

•B:	magnetic field
• μ_0 :	magnetic permeability
•V _{field} :	magnetic volume
•V _{coil} :	coil volume
•. γ :	effective density
•. σ_{hoop} :	hoop stress
•R:	coil radius
•t:	coil thickness

High-strength Al-Stabilizer Uniform reinforcement

- Highest B with minimizing wall material:
- High strength superconductor
 - Ni-doped Al-stabilizer:
 - mechanical reinforcement
 - Low electrical resistance,

Characteristics of Aluminum

Aluminum may provide very wide range characteristics depending on the purity (or RRR) le Detectors

ILC Detector Magnets Possible Design Parameters

		LHC		ILC /0	LIC	
	unit	ATLAS- CS	CMS	ILD	SiD	
Mag. Field	Т	2	4	3.5	5	
Diameter	m	2.5	6.5	8	5.3	
Coil thick.	m	0.045	0.3		0.4	
Length	m	5.4	12.5	8.9	5	
St. Energy	GJ	0,04	2.6		1.4	
E/M	kJ/kg	7	12	~ 12	12	

11/12/08 A. Yamamoto

NbTi Superconductor Faces Limit imposed by Temperature Margin

- A load line ratio of < 70 % should be kept to maintain a temperature margin of >> 1 K.
- The practical limit of NbTi is to provide a useful field of 5 T

Further Optimization on Strength and RRR

	Rein- force	Feature	AI Y.S. (MPa)	Full cond. Y.S.	Full cond. RRR
LHC ATLAS-CS	Uniform	Ni-0.5% Al	110 MPa	146 MPa	590
LHC CMS	Hybrid	Pure-Al & A6082-T6	26/428	258	1400
Future	Hybrid	Ni-Al & A6082-T6	110/428	300	300
Future	Hybrid	Ni-Al & A7020-T6	110/677	400	300

44

E/M Ratio Expected at ILC Solenoids

45

Practical Energy Extraction for effective reduction of E/M ratio

• Immediate switch off and

- Extraction of energy into external dump resister
- Lower energy dump into coil
- Lower peak temperature
- Reliability to be very important
 - Voltage limit across R-ext

Decay Time constant: L/ (R_{ext} + R_{coil})

An Extremely Thin Solenoid BESS-Polar : Bc = 1 T, D = 0.9 m, t = 3 mm, X = 0.1 Xo

