CERN Centennial Superconductivity Symposium

50 Years of RF Superconductivity *A Perspective*

Hasan Padamsee Cornell University

Outline

- HAPPY BIRTHDAY!!
- Quick Intro RF Cavities
- Why Superconductivity?
- Present world-wide status of SRF
- Historical beginnings and growth
 50 Year Perspective
- The near future
- The far future
 - 50 Year Perspective

RF Cavities for Accelerators

- Key component for acceleration
- Microwave cavity

 RF frequency :100 MHz and 3000 MHz
- Imparts energy to charged particles.

Accelerating Cavity for High Velocity Particles

Typical Accelerating Cavity for Low Velocity Particles

Liquid Helium Copper Niobium Tuner Rf Coupler Pickup Beam Axis

The Miracle of Superconductivity

The Convergence of Classical Concepts cires 1990

H. Padamsee

Main Advantage of Superconducting Cavities

- A superconducting cavity reduces the wall dissipation by many orders of magnitude over a copper cavity
- => Affordable higher CW/long pulse gradients
- Larger aperture cavity geometry for better beam quality

50 Years Ago !

A. P. Banford and G. H. Stafford Plasma Physics, J.Nucl. Energy, Part C, 3, 287(1961)

THE FEASIBILITY OF A SUPERCONDUCTING PROTON LINEAR ACCELERATOR

A. P. BANFORD and G. H. STAFFORD

Rutherford High Energy Laboratory, National Institute for Research in Nuclear Science, Harwell, Berks.

(Received 9 June 1961)

Quote from 1961 Paper

(P.L.A.) at the Rutherford Laboratory operates only at a duty cycle of 1 per cent although, in principle, it could operate at a 100 per cent duty cycle. We have, therefore, been looking into the possibility of applying superconducting principles to proton linear accelerator design. A linear accelerator is very suitable for this ...

2005 The Dream of 1961 Comes Alive !! Oak Ridge Laboratory - Tennessee

Even Though It Took 45 Years to Realize

We learnt something important!

"IMAGINATION 15 EVERYTHING IT IS THE PREVIEW OF LIFE'S COMING ATTRACTIONS"

ALBERT EINSTEIN

50 Yr-Growth of Installed Voltage for v/c = 1 Accelerators

A "Livingston Plot" for RF Superconductivity

Total Installation > 1000 m, > 7 GV

A Variety of Missions for SRF Accelerators

- Low energy nuclear physics, nuclear structure
 - Heavy Ion Linacs
- Medium energy nuclear physics, quark structure of nucleus
 - Recirculating linac
- Nuclear astrophysics
 - Facility for rare isotope beams (FRIB)
- X-Ray Light Sources for life science, materials science & engineering
 - Storage rings, free electron lasers, energy recovery linacs
- Spallation neutron source for materials science and engineering, life science, biotechnology, condensed matter physics, chemistry
 - High intensity proton linac
- High energy physics for fundamental nature of matter, space-time
 - Electron-positron storage ring colliders, linear collider, proton linacs for neutrinos
- Future High Intensity Proton Sources for
 - Nuclear waste transmutation. energy amplifier, power generation from Thorium

1962: Stanford Pioneers: Small Scale TE011 and TM010 Cavities

Stanford Charges Ahead

Stanford Charges Ahead !

- At the 1963 International Conference on High Energy Accelerators in Dubna the Stanford group published a very preliminary design of a
- 20 GeV !!!!! 10% duty cycle superconducting accelerator
- This at a time when no real cavity had ever been built

- Prof. Robert Hofstadter made plans to build a 2 GeV superconducting accelerator in a tunnel on the HEPL site. At gradient of about 13 MeV/m.
- Despite heroic efforts, they obtained a gradient of only 2-3 MeV/m in full scale accelerator structures at 1.3 GHz
- Electron multipactor was the culprit.

1970's Snatching Victory from the Jaws of Defeat

•The superconducting accelerator structure is 48 m in length operating at a gradient of about 3MeV/m, giving a final energy of 600 MeV.

•Demonsrated first FEL

Demonstrated 98% energy recovery

Solution to Multipacting

Electrons drift to equator Electric field at equator is ≈ 0 \rightarrow MP electrons don't gain energy \rightarrow MP stops

1990's :JLAB Completes 5 GeV Electron Recirculator

SOUTH LINAC CRYOMODULES

1990: JLAB : > 1 kW IR FEL With > 99.9 % Energy Recovery

CERN Takes Lead in SRF Installations To Double LEP Energy With 500 m = 3.6 GV of SRF Installation

LEP Cavities and Cryomodules Sputtered Nb Film on Cu Substrate

Pushing LEP Cavities Performance: 6 => 7.5 MV/m

Continue for LHC Cavity and Cryomodule

New LHC Challenge for SRF: Luminosity Upgrade Crab Cavity Designs

Beyond HEP => SRF for Storage Ring Light Sources

Fast Forward: SRF Technology Advances SRF Gradients Have Come A Long Way!

Outstanding Issue for Now

- We need a high Yield at 35 MV/m
 Can we dream of 90% Yield
- We need a low gradient Spread
- Dominant causes, still
 - Quench
 - Field emission

Looking to the Future SRF The next 50 years? Preview of Coming Attractions

- What can we expect from SRF Technology? Gradients, Q values
- What can we expect in Accelerator Applications?
 - Near Future funded projects
 - Far Future projects

Gradients Beyond 40 MV/m ?? Better Shapes Reach 57 - 58 MV/m in Single Cells ! Lower Surface Magnetic Field & RF Lower Losses

60 mm Reentrant Cornell KEK

70 mm Tesla Shape

Best Nb Cavities

PE single call cavity VT

Cornell 60 mm aperture re-entrant cavity LR1-3 March 14, 2007

Beyond Nb? Nb3Sn 50 – 100 MV/m?

Near Future Ambitions - Funded

(Total Installed Voltage)

Year

XFEL The First Tunnel Section

PAC Meeting, November 11-12, 2010, Eugene, OR E. Elsen, DESY

Total Low Velocity Apps > 1 GeV

SPIRAL 2

FRIB, Facility for Rare Isotope Beams at MSU

- FRIB will allow major advances in nuclear science and nuclear astrophysics
- 336 Resonators QWR and HWR

CERN HIE-ISOLDE

European Spallation Source - Lund

Combination of Low and High Velocities Another 2.5 GeV

	Length (m)	Input Energy (MeV)	Frequency (MHz)	Geometric β	# of Sections	Temp (K)
RFQ	4.7	75 × 10 ⁻³	352.2		1	≈ 300
DTL	19	3	352.2		3	≈ 300
Spoke	58	50	352.2	0.57	14 (2c)	≈ 2
Low Beta	108	188	704.4	0.70	16 (4c)	≈ 2
High Beta	196	606	704.4	0.90	15 (8c)	≈ 2
HEBT	100	2500				

Soft X-ray FEL 2 GeV NGLS at LBNL – Berkeley

Voltage Growth Optimistic !

Far Future: Keep Dreaming Big

Energy Recovery Linac Next Generation Light Source

Many ERL Light Source Projects Under Study

- Will need higher Q's for CW applications at moderate gradients 20 MV/m
- Determine methods to get Q >3x10¹⁰ at 1.8 K?
- Projects to benefit from high Q ERLs
 - Cornell
 - Daresbury ALICE
 - Berlin Prototype
 - KEK-ERL
 - BNL for cooling RHIC beams

Cornell Injector Cavity String 6 x 2-cell cavities

Cornell – Injector Cryomodule 15 MV/m, 25 mA CW beam injected

Best Q Value

Figure 2 – Residual resistance as low as $0.5 \text{ n}\Omega$ is actually measured on large area cavities, giving an intrinsic quality factor Ω_0 exceeding 2 10^{11}

Prepare for the 800 Pound Gorilla

The International Linear Collider (ILC)

International Linear Collider

Damping Rings

16,000 cavities !

31 km

knoth a S10 188

Main Linac

STATE OF

Electrons

Cavity Gradient Milestone Achieved

One (Best) Vendor Yield – 90%

An example of 90% yield at 35 MV/m w/ Q0 >= 8E9 ACCEL/RI cavities without bias

CryoModule Performance ILC – Goal = 31.5 MV/m

Six modules installed in FLASH at DESY provide 1 GeV beam, ILC-Like Beam Accelerated:

With 48, 9-cell cavities operating between 20 - 25 MV/m. Strong basis for XFEL which will also be a prototype for ILC

High Intensity Proton Frontier

- Upgrade proton injector complex
- High intensity neutrino beams
- Neutrino factory
- Muon collider
- Accelerator Transmutation Nuclear Waste
- Energy Amplifier with Thorium
 - Fermilab PX 3 GeV
 - CERN SPL -4 5 GeV (2 -4 MW)
 - India high intensity accelerator >10 MW (eventually)

CERN - SPL

- Start with Low Power SPL, 4 GeV, 20 mA
- •Upgraded infrastructure (RF, cooling & electricity, etc.)
- Add 5 high β cryomodules to accelerate up to 5 GeV (π production for ν Factory)
- Beam power 2 4 MW

SC-linac (160 MeV \rightarrow 5 GeV) with ejection at intermediate energy

High Power Protons:

Basis for a Future Neutrino Factory & Muon Collider

- Proton Driver needs 4 MW
- Neutrino Factory needs about 4 GV acceleration, multiple pas

- Muon Collider needs 200 GeV acceleration
 - Depending on number of passes in RLA
 - Five passes?

Concluding Wish!

May all these "coming attractions" face ZERO RESISTANCE !!