Simulation of thin DEPFET's Validation using TB data

B. Schwenker Universität Göttingen

Outline

- DEPFET simulation model:
 - Eloss inside active silicon (Geant4)
 - Collection of signal electrons
 - Drift and diffusion into internal gate
 - Taking into account Lorentz shift
 - Using inpixel potential (simplified!)
 - Electronic Noise & Simulation of 8bit ADC
- · Test beam data helps to
 - Calibrate simulation: gq factor and noise in e-
 - Validate charge collection model
 - Answer question: Some effect missing? Biggest Uncertainty?

Signal Calibration Assumptions

- Charge collection:
 - We assume no losses in simulation
 - N electrons in bulk all collected in IG's
- Internal amplification:
 - Electrons (Q) to drain current (dl)
 - Need to know Gq [pA/e]
- ADC chip:
 - Drain current (Id) to ADC codes
 - Need to know LSB → ask Ivan
- We can estimate Gq fitting cluster charge spectrum of 120GeV pions to Geant4 spectrum.

120GeV pions in 50mu Si

H4.1.04 in TB2011: LSB is 103nA

- Most probable signal 10 +/- 0.5 ADU (H4.1.04)
- Pixel noise is 0.5ADU
- Gq is 0.29 +/ 0.01 nA/e
- Equivalent noise charge 180e-

Parameter Overview H4.1.04 @ 100MHz

- 8bit ADC: LSB is 103nA
- Noise: 0.5ADU or 50nA
- Pedestals: 10ADU (Mean) and 20ADU (RMS)
 - ADC range is [-127,128]
 - Overflow: pixel signal > 117ADU
- Gq is 0.29nA/e-
 - Noise charge is 180e-
 - LSB is 360e-
 - Signal headroom without pedestals: [0e,92000e]
 - Signal headroom with pedestals: [0e,...,42000e]

Parameter Overview Belle II scenario

- Some number well known:
 - DCD noise: 60,...,100nA [Ivan: DCDBv2 @ 300MHz]
 - Gq: 0.5nA [Rainer: Standard design, 5um gate length]
 - Equivalent noise 120,..,200e-
- Pedestal distribution is badly known
 - TB case can serve as a optimistic starting point
 - Dependence on matrix size, irradiations, etc.
- LSB can probably be optimized
 - For spatial resolution: LSB < 2xNoise
 - Other criteria (pattern recognition) ??

Simulation Setup

- 5 telescope modules
 - 20x20um^2 DEPFET's
 - Thickness is 50um
 - Z spacing is 10mm
- DUT module
 - Simulation of DEPFET H4.1.04
- Particle gun
 - 120GeV pions
 - vertex spread
 - normal incidence with angular spread as TB
- Reconstruction parallel to TB data
 - 3x3 clustering: Seed cut 4xNoise; Neighbor cut 2xNoise
 - Match DUT hits to tracks for analysis

Cluster Charge

- :- Nice Landau distributions
- :- No overflow in TB data seen (as expected)

:- Good modeling of seed charge in Digitizer

Cluster Size

Cluster SizeX

Cluster SizeY

Seed Fraction = Seed Signal / Cluster Signal

CoG Residuals

Summary

- Charge collection model in Digitizer works well
 - This was known for thick DEPFET's
 - Now checked for thin devices
- Digitizer should always simulate 8bit ADC
 - Add simulation of Gaussian pedestals to Digitizer
 - Each pixel gets a specific signal headroom
- Least well known parameters
 - Shape of pedestals
 - Optimization of LSB
- ToDo: processing of angular scan data from test beam [0°,..,60°]
- Plan to integrate 3D potentials into digitizer simulation (Prag, Goettingen)