# Status and Prospects of Super KEKB and Belle II

Zdenek Dolezal Charles University in Prague for Belle II

KEK High Energy Accelerator Reseach Organization

Belle II Graphic by Rey.Ho

## Contents

- Physics case for a Super B factorySuperKEKB/Belle-II@KEK
- Accellerator
- Detector
- •Status and prospects of the project

## B-factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decays (e.g.,  $B \rightarrow \tau v$ ,  $D\tau v$ )
- $b \rightarrow s$  transitions: probe for new sources of CPV and constraints from the b $\rightarrow$ s $\gamma$  branching fraction
- Forward-backward asymmetry  $(A_{FB})$  in b $\rightarrow$ sll has become a  $B^0 \rightarrow J/\psi K^0$ 400

  - Searches for rare  $\tau$  decays
  - Observation of new hadrons





## Asymmetric B factories



## "Super" B Factory strategy

B factories  $\rightarrow$  is SM with CKM right?

Super B factories  $\rightarrow$  How is the SM wrong?

→ Need much more data (two orders!) because the SM worked so well until now → Super B factory

However: it will be a different world in four years, *there will be new knowledge from* LHCb, BESIII, ...

Still, e<sup>+</sup>e<sup>-</sup> machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more



## **Full Reconstruction Method**

- Fully reconstruct one of the B's to
  - Tag B flavor/charge
  - Determine B momentum
  - □ Exclude decay products of one B from further analysis



 $\rightarrow$  Offline B meson beam!

#### Powerful tool for B decays with neutrinos

ECFA Plenary 24/11/2011

### Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

 $\rightarrow$  limit on charged Higgs mass vs. tan $\beta$ 





## Why FCNC decays?

Flavour changing neutral current (FCNC) processes (like  $b \rightarrow s, b \rightarrow d$ ) are forbidden at the tree level in the Standard Model. Proceed only at low rate via higher-order loop diagrams. Ideal place to search for new physics.



## Why FCNC decays?

Correlations among various heavy flavor observables will be exploited to identify the nature of NP.



Interpretations of possible NP contributions profits from complementarity of measurements at Belle II and LHCb.

## Physics at a Super B Factory

- There is a good chance to see new phenomena;
   CPV in B or D decays from the new physics (non KM).
   Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constraint (if not found) new physics models.
- Even in the worst case scenario (MFV), Belle II measurements can search for effects of NP in the mass scale O(1 TeV).
- Physics motivation is independent of LHC.
  - □ If LHC finds NP, precision flavor physics is compulsory to exploit its nature.
  - If LHC finds no NP, high statistics B/D/τ decays would be a unique way to search for the O(1 TeV) (MFV) - O(100 TeV) (enhanced flavor violating couplings) scale physics.

Full physics case of Belle II documented in arXiv:1002.5012

# Super B factory: an important part of a broad unbiased approach to New Physics

![](_page_11_Figure_1.jpeg)

ECFA Plenary 24/11/2011

![](_page_12_Figure_0.jpeg)

### Schedule (Beam starts in Fall 2014)

![](_page_13_Figure_1.jpeg)

### The KEKB Collider & Belle Detector

![](_page_14_Figure_1.jpeg)

- e<sup>-</sup> (8 GeV) on e<sup>+</sup>(3.5 GeV) •  $\sqrt{s} \approx m_{Y(4S)}$ • Lorentz boost:  $\beta\gamma$ =0.425 - 22 mrad crossing angle - Operating 1999-2010 - Integrated lumi 1015/fb **Peak luminosity (WR!) : 2. 1 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>** 

![](_page_14_Picture_3.jpeg)

## Super KEKB in nano-beam scheme

- **To increase luminosity:**
- → squeeze beams to nanometer scale and enlarge crossing angle (minimize  $\beta_y^*$ )
- $\rightarrow$  decrease beam emittance (keep current  $\xi_y$ )
- □ Squeezing beams in stronger magnetic field saturated by hourglass effect → intersect bunches only at highly focused region

$$L = \frac{\gamma_{\pm}}{2er_e} \left( 1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{y\pm}}{\beta_{y\pm}^*} \frac{R_L}{R_{\xi_y}}$$

I: beam current  $\beta^*$ : trajectories envelope at IP  $\xi_y \propto \sqrt{(\beta_y */\epsilon_y)}$  beam-beam parameter  $\epsilon$ : beam emittance  $\sigma^*$ : beam size  $R_L, R_{\xi y}$ : geometrical reduction factors (crossing angle, hourglass effect)

σ<sub>x</sub>~100μm, σ<sub>y</sub>~2μm σ<sub>x</sub>~10μm, σ<sub>y</sub>~60nm

Nano beam scheme: invented by Pantaleo Raimondi for the SuperB project.

|                | E (GeV)                 | β* <sub>y</sub> (mm) | β* <sub>x</sub> (cm) | ε <sub>x</sub> (nm) | φ      | I (A)   | L (cm <sup>-2</sup> s <sup>-1</sup> ) |
|----------------|-------------------------|----------------------|----------------------|---------------------|--------|---------|---------------------------------------|
|                | LER/HER                 | LER/HER              | LER/HER              | LER/HER             | (mrad) | LER/HER |                                       |
| KEKB           | 3.5/8.0                 | 5.9/5.9              | 120/120              | 18/24               | 11     | 1.6/1.2 | 2.1 x 10 <sup>34</sup>                |
| SuperKEKB      | 4.0/7.0                 | 0.27/0.41            | 3.2/2.5              | 3.2/1.7             | 41.5   | 3.6/2.6 | 80x10 <sup>34</sup>                   |
| Zdeněk Doležal | ECFA Plenary 24/11/2011 |                      |                      |                     |        |         |                                       |

![](_page_16_Figure_0.jpeg)

**i7** 

## Requirements for the Belle II detector

#### Critical issues at L= 8 x $10^{35}$ /cm<sup>2</sup>/sec

- Higher background ( ×10-20)
  - radiation damage and occupancy
  - fake hits and pile-up noise in the EM
- Higher event rate ( ×10)
  - higher rate trigger, DAQ and computing
- Special features required
  - low  $p \mu$  identification  $\leftarrow$  s $\mu\mu$  recon. eff.
  - hermeticity  $\leftarrow v$  "reconstruction"

#### Result: significant upgrade

TDR published arXiv:1011.0352v1 [physics.ins-det]

![](_page_17_Figure_12.jpeg)

### Belle to Belle II Upgrade

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (endcaps)

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (endcaps)

electrons (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C<sub>2</sub>H<sub>6</sub>(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positrons (4GeV)

### Interaction Region Design

- New final focusing system based on the nano-beam scheme has been designed.
  - Consists of 8 superconducting magnets
  - Final focusing Q-magnets for each beam
  - Crossing angle 83 mrad to bring the FF magnets closer to IP

N.Ohuchi

![](_page_19_Figure_5.jpeg)

## Pixel vertex detector: DEPFET

![](_page_20_Figure_1.jpeg)

Power consumption in sensitive area:  $0.1W/cm^2 => air-cooling sufficient$ 

#### Silicon Vertex Detector

![](_page_21_Figure_1.jpeg)

## Central Drift Chamber

 $\sigma_{P_t}/P_t = 0.19P_t \oplus 0.30/eta \ \sigma_{P_t}/P_t = 0.11P_t \oplus 0.30/eta$ 

![](_page_22_Figure_2.jpeg)

|                       | Belle                            | Belle II                         |
|-----------------------|----------------------------------|----------------------------------|
| inner most sense wire | r=88mm                           | r=168mm                          |
| outer most sense wire | r=863mm                          | r=1111.4mm                       |
| Number of layers      | 50                               | 56                               |
| Total sense wires     | 8400                             | 14336                            |
| Gas                   | He:C <sub>2</sub> H <sub>6</sub> | He:C <sub>2</sub> H <sub>6</sub> |
| sense wire            | W(Φ30μm)                         | W(Φ30μm)                         |
| field wire            | Al(Φ120μm)                       | Al(Φ120μm)                       |

new readout system dead time 1-2µs → 200ns small cell smaller hit rate for each wire shorter maximum drift time

![](_page_22_Figure_5.jpeg)

-1200 mm

### Belle II

![](_page_22_Figure_7.jpeg)

#### small cell

![](_page_22_Figure_9.jpeg)

![](_page_22_Picture_10.jpeg)

### Central Drift Chamber Readout

- New electronics has been designed and tested
- The drift time is measured with an FPGA-based TDC
- A slow FADC (around 30MSa/s) measures the signal charge.

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_5.jpeg)

### Barrel PID: Time of propagation (TOP) counter

![](_page_24_Figure_1.jpeg)

### End-cap PID: Aerogel RICH

Proximity focusing RICH with aerogel radiator
 Endcap PID: Aerogel RICH

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

Test Beam setup

![](_page_25_Picture_5.jpeg)

#### Clear Cherenkov image observed

### ECL Upprade

- Increase of dark currents due to neutron flux
- Fake clusters & pile-up noise

![](_page_26_Figure_3.jpeg)

![](_page_26_Figure_4.jpeg)

 $y_{i+5}$ 

## KLM upgrade

Scintillator-based KLM (endcap)

- Two independent (x and y) layers in one superlayer made of orthogonal strips with WLS read out
- Photo-detector = avalanche photodiode in Geiger mode (SiPM)
- ~120 strips in one 90° sector (max L=280cm, w=25mm)
- ~30000 read out channels
- Geometrical acceptance > 99%

![](_page_27_Figure_7.jpeg)

## **Belle II Computing Model**

![](_page_28_Figure_1.jpeg)

#### KEKB being disassembled after 11 years of successful run

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_31_Picture_0.jpeg)

Belle is also being disassembled to revive as Belle-II.

![](_page_31_Picture_2.jpeg)

## The Earthquake

![](_page_32_Picture_1.jpeg)

As is well known, Japan suffered a terrible earthquake and tsunami on March 11, which has caused tremendous damage, especially in the Tohoku area. Fortunately, all KEK personnel and users were safe. The injection linac did suffer significant but manageable damage, and repairs are underway. The damage to the KEKB main rings appears to be less serious, though non-negligible. No serious damage has been reported so far at Belle.

## **KEKB/Belle** status

#### Fortunately enough:

- KEKB stopped operation in July 2010, and the low energy ring was to a large extent disassembled
- Belle was rolled out in its parked position

The 1400 tons of Belle moved by ~6cm (most probably by 20cm in one direction, and 14cm back)...

![](_page_33_Picture_5.jpeg)

We are checking the functionality of the Belle spectrometer (in particular the CsI calorimeter), so far checks out OK in LED and cosmic ray tests

The lab (Tsukuba campus) has to a large extent recovered from the earthquake, back to normal operation – very little impact on the upgrade schedule

## SuperKEKB/Belle II Funding Status

- Accelerator upgrade + 50% of the detector ca 320 M€ approved in March 2011
- Funding of the contribution to the remaining 50% of the detector ca 20 M€ in many other countries approved or on the way
- First MoU between German FAs and KEK signed

![](_page_34_Picture_4.jpeg)

## The Belle II Collaboration

A very strong group of ~400 highly motivated scientists!

![](_page_35_Picture_2.jpeg)

#### Next open general meetings: KEK March 14-17 2012 Bad Aibling (Bavaria) July 26-29 2012

Zdeněk Doležal

ECFA Plenary 24/11/2011

## Belle II Collaboration (Europe)

- Significant European participation + funding
- 19 institutes with ca 130 physicists (A, CZ, D, E, PL, RUS, SLO)
- Spokesperson P. Križan, Ljubljana
- CERN Recognized Experiment RE20

![](_page_36_Figure_5.jpeg)

## Summary

- SuperKEKB/Belle II aims for (discovering and) understanding the New Physics.
- Target luminosity of SuperKEKB is 8x10<sup>35</sup>/cm<sup>2</sup>/s, will provide 50ab<sup>-1</sup> by 2021-2022.
- Belle II gives similar or better performance than Belle even under higher beam background.
- Project has been approved by Japanese Government. KEKB/Belle operation has been terminated and construction started.
- Next collaboration meeting: 14-17 March 2012 @KEK, still open to everyone. New collaborators welcome!
- Project officially started with the Groundbreaking ceremony last week

38

## Groundbreaking ceremony Nov 18 2011, KEK

![](_page_38_Picture_1.jpeg)

## Many thanks to CERN DG for his nice words!

![](_page_38_Picture_3.jpeg)

## Groundbreaking ceremony Nov 18 2011, KEK

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_40_Picture_0.jpeg)

26

#### Luminosity at the B Factories

![](_page_41_Figure_1.jpeg)

Zdeněk Doležal **Fantastic performance much beyond design values!** 

#### **Physics reach at a Super KEKB/Belle**

![](_page_42_Figure_1.jpeg)

Physics at Super B Factory [hep-ex/0406071] Currently being updated.

3

### $A_{FB}(B \rightarrow K^* I^+ I^-)[q^2]$ at a Super B Factory

![](_page_43_Figure_1.jpeg)

► Zero-crossing q<sup>2</sup> for A<sub>FB</sub> will be determined with a 5% error with 50ab<sup>-1</sup>.

Zdeněk Doležal Strong competition from 1/2011Cb and ATLAS/CMS 44

#### **Comparison with the LHCb**

| e <sup>+</sup> e <sup>-</sup> has advantages in | LHCb has advantages in            |
|-------------------------------------------------|-----------------------------------|
| CPV in $B \rightarrow \phi K_S$ , $\eta' K_S$ , | CPV in $B \rightarrow J/\psi K_S$ |
| CPV in $B \rightarrow K_S \pi^0 \gamma$         | Most of <i>B</i> decays not       |
| $B \rightarrow K_{YY} \tau_Y D^{(*)} \tau_Y$    | including v or $\gamma$           |
| Inclusive $b \rightarrow s \mu \mu$ , see       | Time dependent                    |
| $\tau \rightarrow \mu \gamma$ and other LFV     | measurements of $B_S$             |
| $D^0 \overline{D^0}$ mixing                     | $B_{(s,d)} \rightarrow \mu\mu$    |
|                                                 | $B_c$ and bottomed baryons        |

Complementary!!

#### Luminosity gain and upgrade items (preliminary)

| Item                                                    | Gain  | Purpose                                                   |
|---------------------------------------------------------|-------|-----------------------------------------------------------|
| beam pipe                                               | x 1.5 | high current, short bunch, electron cloud                 |
| IR( $\beta_{x/y}^*$ =20cm/3 mm)                         | x 1.5 | small beam size at IP                                     |
| low emittance(12 nm)<br>$\Box \Box v_x \rightarrow 0.5$ | x 1.3 | mitigate nonlinear effects with beam-beam                 |
| crab crossing                                           | x 2   | mitigate nonlinear effects<br>with beam-beam              |
| <b>RF/infrastructure</b>                                | x 3   | high current                                              |
| DR/e <sup>+</sup> source                                | x 1.5 | low $\beta^*$ injection, improve e <sup>+</sup> injection |
| charge switch                                           | x ?   | electron cloud, lower e <sup>+</sup><br>current           |

#### **Major KEKB components**

| Item                              | Object                                |                                                                | Oku-yen<br>~1.0 M\$                                  | Luminosity        |
|-----------------------------------|---------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-------------------|
| New beam<br>pipes                 | Enable high current<br>Reduce e-cloud |                                                                | 178<br>(incl. BPM,<br>magnets, etc.)                 | x 1.5             |
| New IR                            | Small β*                              |                                                                | 31                                                   | x 2               |
| e+ Damping<br>Ring                | Allow injection increase e+           | with small capture                                             | 40 incl. linac<br>upgrade                            | if not,<br>x 0.75 |
| More RF and<br>cooling<br>systems | High current                          |                                                                | 179<br>(incl. facilities)                            | x 3               |
| Crab Cavities                     | Higher beam-beam param.               |                                                                | 15                                                   | x (2 – 4)         |
| tems are inter                    | related.                              | <ul> <li>Tunnel al</li> <li>Most of t<br/>(magnets,</li> </ul> | ready exists.<br>he components<br>klystrons, etc.) v | vill be re-used.  |

## Upgrade from KEKB to SuperKEKB

smaller beam size, more current
 → x40 higher luminosity

| Machine parameter                                                  | HER<br>(KEKB) | LER<br>(KEKB)      | HER<br>(SuperKEKB) | LER<br>(SuperKEKB) |
|--------------------------------------------------------------------|---------------|--------------------|--------------------|--------------------|
| Vertical beam size                                                 | 0.94µm        | 0.94µm             | 59nm               | 59nm               |
| Beam current(mA)                                                   | 1188          | 1637               | 2600               | 3600               |
| luminosity(cm <sup>-2</sup> s <sup>-1</sup> ) 2.1x10 <sup>34</sup> |               | 8x10 <sup>35</sup> |                    |                    |

## Introduction: background sources

- Touschek effect (∝IxE<sup>-3</sup>)
  - Intra-bunch scattering → energy increase & decrease
  - Significant in low energy ring (LER)
- Beam-gas scattering (∝PxI)
  - Collision with remaining gas
  - Type 1: Coulomb scattering → direction change
  - Type 2: Bremsstrahlung → energy decrease
- Synchrotron Radiation (∝E<sup>2</sup>xB<sup>2</sup>)
  - Type 1: Upstream (SR hit Be beam pipe directly)
  - Type 2: Backscatter (SR hit downward beam pipe, then reflected back to IP)
- Radiative Bhabha, other QED process (∝L)
  - Type 1: radiated gamma + magnet Fe → neutron, main bkg source for KLM
  - Type 2: e+,e- lose energy →off-trajectry → hit downward beam pipe → shower
- Beam-beam effect
  - Injected particles with a large horizontal oscillation (due to injection error) may be lost

H.Nakayama(KEK)

### **BG** estimation at SuperKEKB

#### Assumptions:

- Use τ<sub>Touschek</sub> from optics simulation: 8.7min(LER), 15.3min(HER)
- Use same τ<sub>beam-gas</sub> from KEKB machine study: <u>800min(LER)</u>, <u>3400min(HER</u>)

CDC

- Use same k<sub>Touchek</sub>, k<sub>beam-gas</sub> from KEKB machine study
- CDC 400+-40 uA (cf. ~20uA@2003)
  - → <u>~120 kHz/wire</u> or less at layer 6 or outer
- ECL 60+-5 GeV/event
  - $\rightarrow$  wave form fitting (x1/7)  $\rightarrow \underline{^{\circ}9 \text{ GeV/event}}$
- SVD 6000+-600 event/trigger
  - $\rightarrow$  shorter integration time (2µs $\rightarrow$ 75ns)
  - → ~400 event/trigger, <u>occupancy: 2.7%+-0.3%</u> <10% (SVD2)
- PXD (estimated from SVD)
  - $\rightarrow$  3.2M pixels in 1<sup>st</sup> layer, shaping time: 20µs
  - $\rightarrow$  Occupancy = 1.5  $\pm$  0.1%
  - (not including low-pt tracks or <few keV gammas)

SR, Rad.Bhabha, beam-beam BG are not included

HER beam-gas

LER\_beam-gas
HER Touschek

LER Touschek

LER/total: 60~70%,

Touschek/total: >90%

PXD 1st: 14mm SVD2 1st : 30mm

#### **DEPFET Radiation Damage**

DEPFET based on a MOS structure problem with ionizing radiation: Creation of fixed (positive) charges in the oxide layer and at the interface Attracts electrons at the Si/SiO<sub>2</sub> interface Need more negative gate voltages to compensate

![](_page_50_Figure_2.jpeg)

![](_page_50_Figure_3.jpeg)

#### **Belle II basic parameters (TDR)**

| Component | Type                | Configuration                                                 | Readout                          | Performance                                                                          |
|-----------|---------------------|---------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|
| Beam pipe | Beryllium           | Cylindrical, inner radius 10 mm,                              |                                  |                                                                                      |
|           | double-wall         | $10 \ \mu m$ Au, 0.6 mm Be,                                   |                                  |                                                                                      |
|           |                     | 1 mm coolant (paraffin), 0.4 mm Be                            |                                  |                                                                                      |
| PXD       | Silicon pixel       | Sensor size: $15 \times 100 (120) \text{ mm}^2$               | 10 M                             | impact parameter resolution                                                          |
|           | (DEPFET)            | pixel size: $50 \times 50$ (75) $\mu m^2$                     |                                  | $\sigma_{z_0} \sim 20 \ \mu { m m}$                                                  |
|           |                     | 2 layers: 8 (12) sensors                                      |                                  | (PXD and SVD)                                                                        |
| SVD       | Double sided        | Sensors: rectangular and trapezoidal                          | 245 k                            |                                                                                      |
|           | Silicon strip       | Strip pitch: $50(p)/160(n) - 75(p)/240(n) \ \mu m$            |                                  |                                                                                      |
|           |                     | 4 layers: 16/30/56/85 sensors                                 |                                  |                                                                                      |
| CDC       | Small cell          | 56 layers, 32 axial, 24 stereo                                | 14 k                             | $\sigma_{r\phi} = 100 \ \mu \text{m}, \ \sigma_z = 2 \ \text{mm}$                    |
|           | drift chamber       | r = 16 - 112  cm                                              |                                  | $\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$                          |
|           |                     | $-83 \le z \le 159 \text{ cm}$                                |                                  | $\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)               |
|           |                     |                                                               |                                  | $\sigma_{dE/dx} = 5\%$                                                               |
| TOP       | RICH with           | 16 segments in $\phi$ at $r \sim 120$ cm                      | 8 k                              | $N_{p.e.} \sim 20,  \sigma_t = 40  \mathrm{ps}$                                      |
|           | quartz radiator     | 275 cm long, 2 cm thick quartz bars                           |                                  | $K/\pi$ separation :                                                                 |
|           |                     | with 4x4 channel MCP PMTs                                     |                                  | efficiency > 99% at $< 0.5\%$ pion                                                   |
|           |                     |                                                               |                                  | fake prob. for $B \to \rho \gamma$ decays                                            |
| ARICH     | RICH with           | 4 cm thick focusing radiator                                  | 78 k                             | $N_{p.e.} \sim 13$                                                                   |
|           | aerogel radiator    | and HAPD photodetectors                                       |                                  | $K/\pi$ separation at 4 GeV/c:                                                       |
|           |                     | for the forward end-cap                                       |                                  | efficiency 96% at 1% pion fake prob.                                                 |
| ECL       | CsI(Tl)             | Barrel: $r = 125 - 162 \text{ cm}$                            | 6624                             | $\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{\sqrt[4]{E}} \oplus 1.2\%$ |
|           | (Towered structure) | End-cap: $z =$                                                | 1152 (F)                         | $\sigma_{pos} = 0.5 \text{ cm}/\sqrt{E}$                                             |
|           |                     | -102  cm and  +196  cm                                        | 960 (B)                          | (E in GeV)                                                                           |
| KLM       | barrel: RPCs        | 14  layers (5  cm Fe + 4  cm gap)                             | <i>θ</i> : 16 k, <i>φ</i> : 16 k | $\Delta \phi = \Delta \theta = 20$ mradian for $K_L$                                 |
|           |                     | 2 RPCs in each gap                                            |                                  | $\sim 1~\%$ hadron fake for muons                                                    |
|           | end-caps:           | 14 layers of $(7 - 10) \times 40 \text{ mm}^2 \text{ strips}$ | 17 k                             | $\Delta \phi = \Delta \theta = 10$ mradian for $K_L$                                 |
|           | scintillator strips | read out with WLS and G-APDs                                  |                                  | $\sigma_p/p = 18\%$ for 1 GeV/c $K_L$                                                |

### Another FCNC decay: $B \rightarrow K^*$

![](_page_52_Figure_1.jpeg)

 $b \rightarrow s I^{+}I^{-}$  was first measured in  $B \rightarrow K I^{+}I^{-}$  by Belle (2001).

Important for further searches for the physics beyond SM

Particularly sensitive: backward-forward asymmetry in K<sup>\*</sup> I<sup>+</sup>I

$$A_{FB} \propto \Re \left[ C_{10}^* (sC_9^{eff}(s) + r(s)C_7) \right]$$

C<sub>i</sub>: Wilson coefficients, abs. value of C<sub>7</sub> from b→s $\gamma$  s=lepton pair mass squared

## D<sup>0</sup> mixing in K+K<sup>-</sup>, $\pi^+\pi^-$

![](_page_53_Figure_1.jpeg)

An observation of CP violations would be a clear sign of new physics

### Precision measurements of $\tau$ decays

#### LF violating $\tau$ decay?

![](_page_54_Figure_2.jpeg)

## Beam Energy Asymmetry and Physics Sensitivity

![](_page_55_Figure_1.jpeg)

#### **DEPFET Principle**

•p-channel FET on a completely depleted bulk
•A deep n-implant creates a potential minimum for electrons under the gate
•("internal gate")

•Signal electrons accumulate in the internal gate and modulate the transistor current  $(g_q \sim 400 \text{ pA/e}^-)$ 

•Accumulated charge can be removed by a clear contact ("reset")

•Invented in MPI Munich

Fully depleted:

 $\rightarrow$  large signal, fast signal collection Low capacitance, internal amplification  $\rightarrow$  low noise

Transistor on only during readout: low power

Complete clear  $\rightarrow$  no reset noise

![](_page_56_Figure_9.jpeg)

## Neutron flux

 $1 \text{ year} = 10^7 \text{ sec}$ 

|           | Region                 | Simulation<br>(Touschek BG)                                                                                                        | Assumption<br>used for R&D   | Life time by irradiation test based on the assumption |
|-----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------|
| PXD       | Sensors,<br>readout    | 2x10 <sup>11</sup> /cm2/year<br>(+0.7x10 <sup>11</sup> from 2-photon)                                                              | 10 <sup>12</sup> /cm2/year   | OK for at least 10 years<br>(10 <sup>13</sup> n/cm2)  |
| SVD       | Sensors,<br>chips      | 3 x 10 <sup>11</sup> /cm2/year                                                                                                     | -                            | Should be OK<br>(tested in ATLAS/CMS)                 |
| ТОР       | Readout<br>electronics | ~ 5x10 <sup>10</sup> /cm2/year                                                                                                     | 10 <sup>11</sup> /cm2/year   | To be tested                                          |
| ARIC<br>H | HAPD/ASIC              | ~7x10 <sup>10</sup> /cm2/year                                                                                                      | 10 <sup>11</sup> /cm2/year   | OK for at least 4 years                               |
| ECL       | Diodes                 | ~8x10 <sup>10</sup> /cm2/year                                                                                                      | 10 <sup>11</sup> /cm2/year   | OK for at least 40 years                              |
| EKLM      | SiPMs                  | <2x10 <sup>8</sup> /cm2/year<br>- upper limit since observed no<br>hits<br>- not including neutrons which<br>travel more than 10us | 10 <sup>9</sup> /cm2/year    | OK for at least 10 years                              |
| BKLM      | SiPMs                  | 2~8x10 <sup>9</sup> /cm2/year                                                                                                      | 2x10 <sup>10</sup> /cm2/year | OK for at least 10 years                              |

Neutron flux on CDC readout board is rather small, since boards are located on backward side and Touschek loss position is on forward side. It might increase (by order) including other BG sources which are lost on backward side.

## Radiation dose

 $1 year = 10^{7} sec$ 

|           | Region                     | Simulation<br>(Touschek BG)           | Assumption<br>used<br>for R&D    | Life time by irradiation<br>test based on the<br>assumption |
|-----------|----------------------------|---------------------------------------|----------------------------------|-------------------------------------------------------------|
| PXD       | DCD,<br>DHP,<br>switchers  | ~2 Gy/year<br>(+2 Gy/y from 2-photon) | 10,000 Gy/year<br>(conservative) | OK up to at least 10 years                                  |
| SVD       | APV                        | 3.5 Gy/year                           | -                                | Much more than 100Gy                                        |
| ТОР       | Readout<br>electronic<br>s | ~10 Gy/year                           | 100 Gy/year                      | OK up to at least 10 years                                  |
| ARIC<br>H | PCB,APD<br>s               | ~10 Gy /year                          | 100 Gy/year                      | OK up to at least 10 years                                  |
| ECL       | Crystals                   | ~8 Gy/year                            | 40 Gy/year                       | OK up to at least 10 years                                  |

Impact from Touschek BG is tolerable in terms of neutron/radiation dose. Next step is to see the impact from other BG sources, such as beam-gas BG, radiative Bhabha BG, SR, etc..

Relle-II focused review (Nov. 11th. 2011)

H\_Nakavama (KEK)

#### Thinning Technology

![](_page_59_Figure_1.jpeg)

- Sensor wafer bonded on "handle" wafer.
- Rigid frame for handling and mechanical stiffness
- 50 µm thickness produced
- Samples of 10x1.3 cm<sup>2</sup> & frame of 1 & 3 mm width
- Electrical properties ok (diodes)

![](_page_59_Picture_7.jpeg)

![](_page_59_Picture_8.jpeg)

#### **New Collaboration (Belle II)**

- Belle II is a new international collaboration
  - Significant European participation + funding (A, CZ, D, PL, RUS, SLO)
  - Spokesperson P. Križan, Ljubljana

![](_page_60_Figure_4.jpeg)

| Detector  | Proposed<br>budget<br>(Sep. 2010) | Possible reduction | Assumed in-kind contributions   | Budget requested<br>to KEK |               |
|-----------|-----------------------------------|--------------------|---------------------------------|----------------------------|---------------|
| IR        | 94                                | 19                 | 0                               | 76                         |               |
| PXD       | ~€3.5M                            |                    | ~€3.5M<br>(DEPFET Collab.)      | 0                          |               |
| SVD       | 500                               | 130                | 100 (Vienna)                    | 270                        |               |
| CDC       | 358                               | 11                 | 30 (NTU)                        | 317                        |               |
| BPID      | 878                               |                    | 508 (US)<br>120 (Nagoya)        | 250                        |               |
| EPID      | 599                               | 100                | 120 (Ljubljana)                 | 379                        |               |
| ECL       | 327                               | 0                  | 0                               | 327                        | $\rightarrow$ |
| KLM       | 165                               | 0                  | 35 (ITEP)<br>50 (VPI)           | 80                         |               |
| Trigger   | 107                               | 0                  | 36 (NTU)                        | 71                         |               |
| DAQ       | 411                               | 0                  | 50 (IHEP, Korea<br>U., Giessen) | 361                        |               |
| Computing | N/A                               | 0                  | N/A                             | N/A                        |               |
| Structure | 336                               | 0                  | 0                               | 336                        |               |
| Total     | 4125                              | 260                | 1399                            | 2467                       |               |

Only for barrel Need extra fund for endcap ECL

## Belle-II Collaboration

New collaboration (Belle-II) officially formed

#### 13 countries/region, 43 institutes, ~300 members

Separate group/organization from Belle

![](_page_62_Figure_4.jpeg)

#### 2010.11: 7<sup>th</sup> Open Collaboration Meeting

#### European groups of Belle-II

The European groups have major responsibilities in some essential detector systems:

- •Pixel vertex detector (DEPFET)
- Silicon strip vertex detector
- •Particle identification systems (endcap Aerogel RICH, barrel Time-of-Propagation counter)
- •Electromagnetic calorimeter
- Muon detector based on scintilator strips

They are also contributing substantially to the computing and software, as well as to the set-up of the physics program.

#### The key factor in KEKB performance: crab cavity

![](_page_64_Figure_1.jpeg)

#### ECFA Plenary 24/11/2011

#### Installed in the KEKB tunnel (February 2007)

![](_page_64_Picture_4.jpeg)

#### **Belle to Belle II Upgrade**

![](_page_65_Figure_1.jpeg)