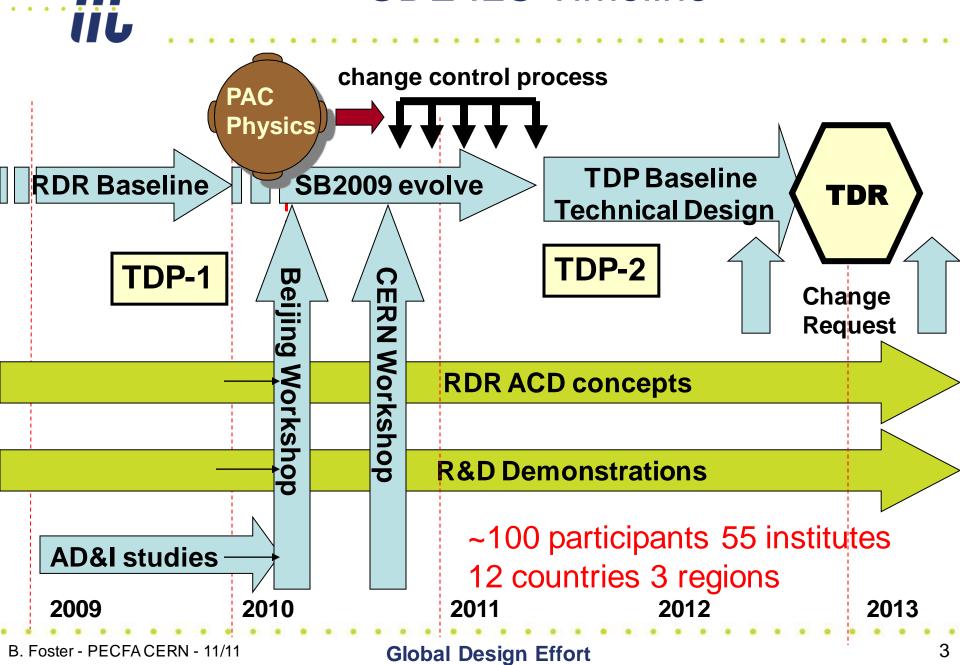
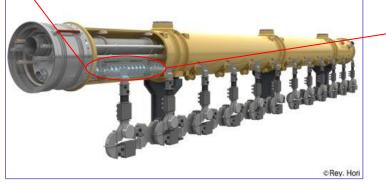


ILC – Recent progress & Path to Technical Design Report

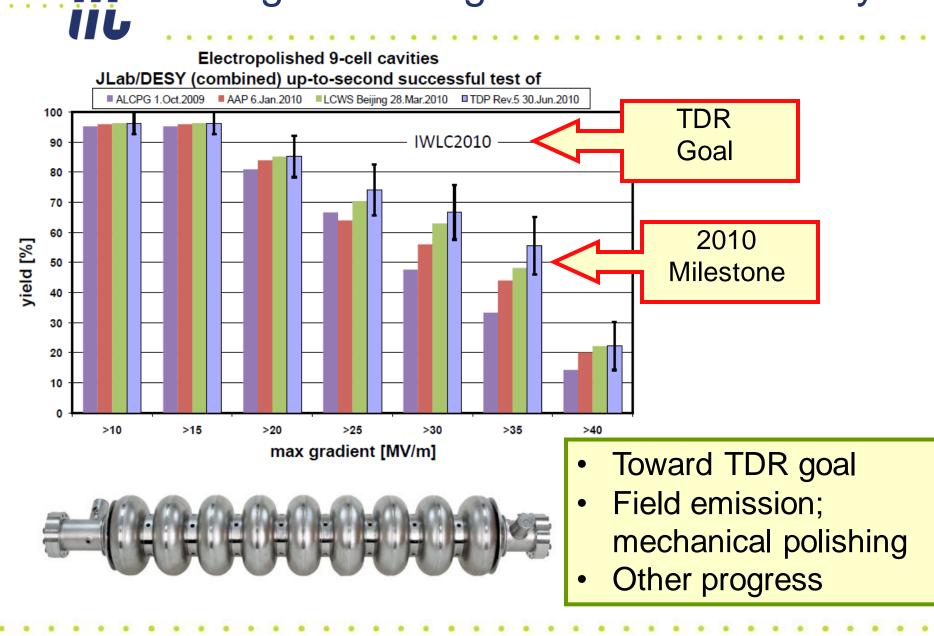

Brian Foster (Hamburg/DESY/Oxford & GDE)

Plenary ECFA CERN 25/11/11

- Current status of R&D
- The path to the TDR
- Developments on ILC site
- Summary & Outlook


GDE ILC Timeline

ILC's Workhorse - SCRF



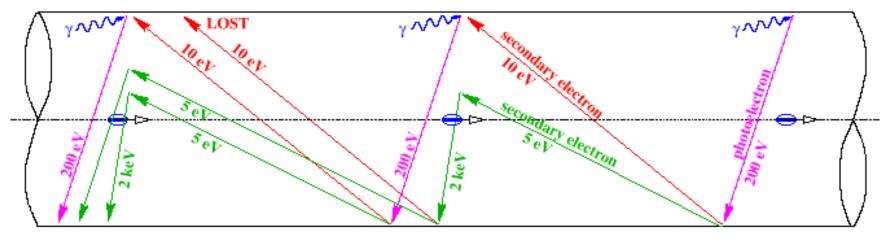
Parameter	Value
C.M. Energy	500 GeV
Peak luminosity	2x10 ³⁴ cm ⁻² s ⁻¹
Beam Rep. rate	5 Hz
Pulse time duration	1 ms
Average beam	9 mA (in
current	pulse)
Av. field	31.5
gradient	MV/m
# 9-cell cavity	14,560
# cryomodule	1,680
# RF units	560

Progress with gradient from industry

B. Foster - PECFACERN - 11/11

:Ir

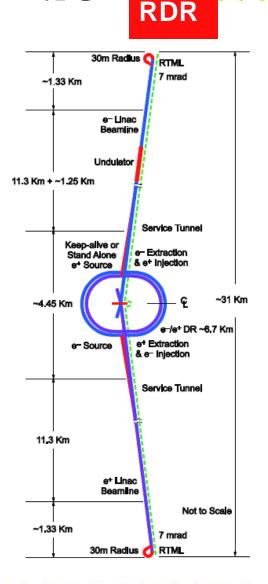
Test facilities – ATF2

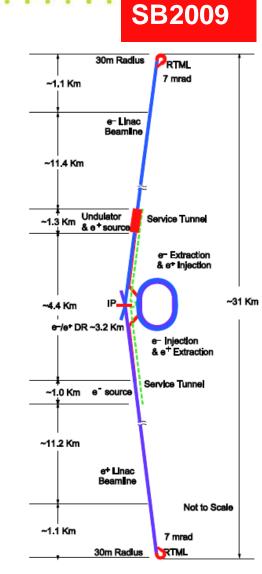

010年10月19日火曜日

B. Foster - PECFACERN - 11/11

ilc

<u>Mitigating Electron Cloud</u>


- Simulations electrodes; coating and/or grooving vacuum pipe
- Demonstration at CESR critical tests


Test facilities – CESR-TA

Field Region	Baseline Mitiga	Alternatives for Further Investigation	
Drift*	TiN Coating	Solenoid Windings	NEG Coating
Dipole	Grooves with TiN Coating	Antechambers for power loads and photoelectron control	R&D into the use of clearing electrodes.
Quadrup ole*	TiN Coating		R&D into the use of clearing electrodes or grooves with TiN coating
Wiggler	Clearing Electrodes	Antechambers for power loads and photoelectron control	Grooves with TiN Coating

From RDR -> TDR

ĪjĻ

- Single Tunnel for main linac
- Move positron source to end of linac
- Reduce number of bunches factor of two (lower power)
 - Reduce size of damping rings (3.2km)
 - Integrate central region

B. Foster - PECFACERN - 11/11

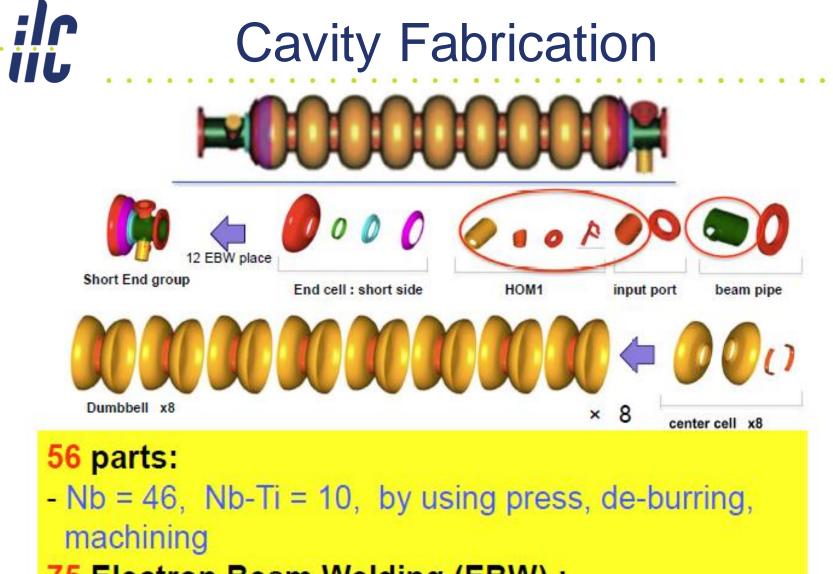
Cost impact on RDR

- RDR estimate = starting point 6,618 Δ
- Caverns, DR & cool Value Eng. -86 -1.3%
- 1 stage B.C. (not yet considered) -33 -0.5%
- Alternative RF (1 tunnel for ML, ½ bunches) Klystron Cluster/DRFS -400/-419 -6.2%
- DR (6.4 => 3.2 km, ½ bunches) -191 -2.9%
- Central Injector Complex -104 <u>-1.6%</u>
- Sub-total of SB2009 changes estimated -10.7%
- Did not consider range of cavity gradients nor details of alternating e+ production at 150 GeV

IC Project Implementation Planning

- Contents
- Executive Summary
- Governance
- Funding Models
- Project Management
- Host Responsibilities
- Siting Issues
- In-Kind Contribution Manels
- Industration and Mass Production of the SCRF Linac Cargonents
- Project Schoule
- Future Technical Activities

Costing methodology


- 6.6 Billion ILC Units (2007 US \$) + 24 Million hours of Institutional Labor (which includes laboratories and universities, but not vendors or contractors)
- TDR will quote estimate in 2012 US \$, need consider:
- Difference in Exchange Rates

In 2006-07:	1\$= 117¥	1€ =\$1.20
1/1/2011:	1 \$ = 81.5 ¥	1€ =\$1.334
now 5/10/2011	: 1\$ = <mark>80.6</mark> ¥	1€ =\$ <mark>1.43</mark>

- 4 yr escalation from 1/1/2007 => 1/1/2011 Index Links
 - US construction, technical goods
 -2.1%, 8.6%
 - Germany construct., indust. products 10.5%, 5.7%
 - Japan construction, industrial products 3.4%, 1.1%

In an in-kind model, exchange rates are highly distorting => move to Purchasing Power Parity Estimation.

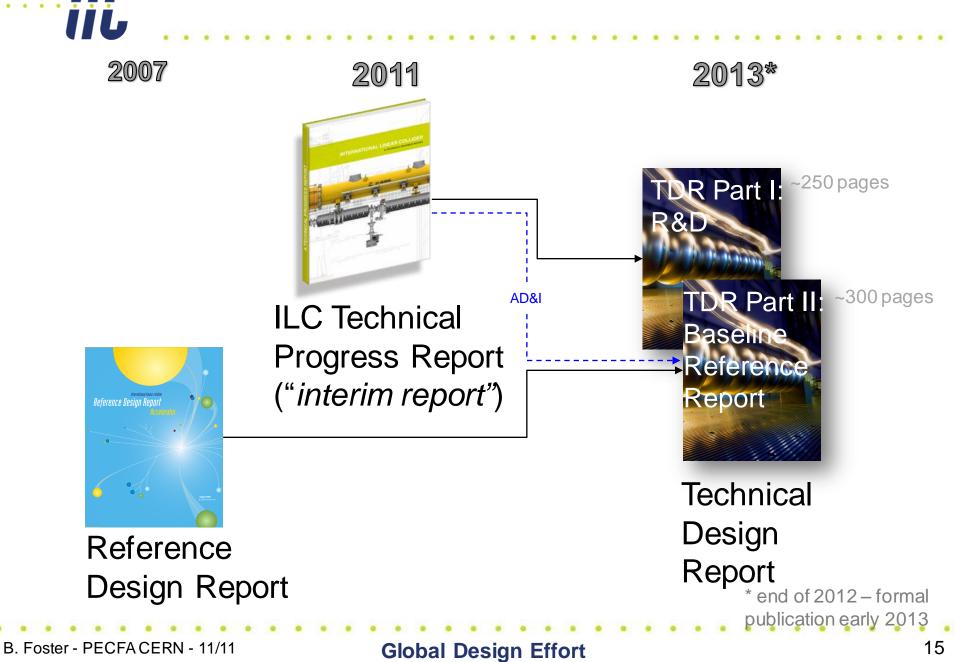
İİİ

75 Electron Beam Welding (EBW) :

Intensive industrial studies in all 3 regions kicking off to investigate cost savings through mass production.

To 1 TeV

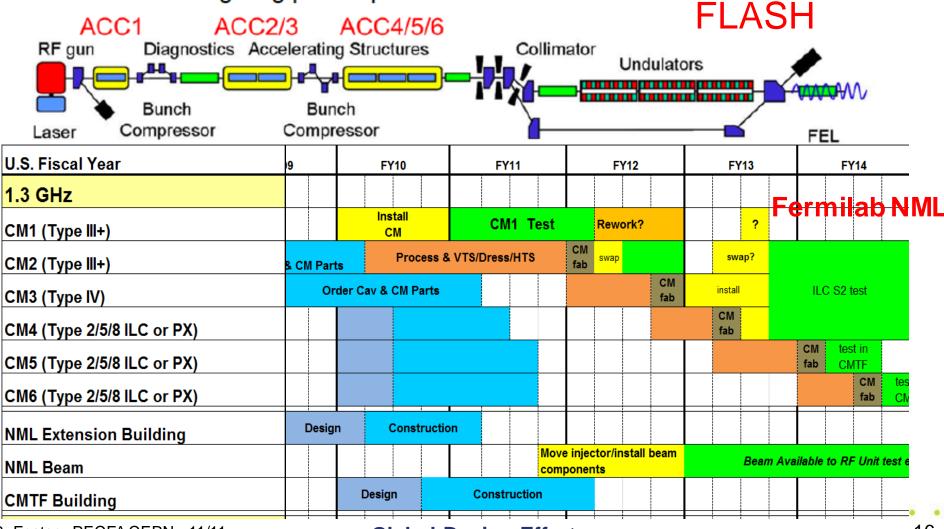
• Upgrade option for study:


iii.

- Power < 300MW AC
- New linac grad = 45 MV/m $Q_0 = 2 \ 10^{10}$
- Strawman TeV parameters
- Post-TDR program:
 - Improve cavity gradient
 - Cost effective production
- Flexibility: Initial ILC energy: higher or lower energy, as informed by LHC results

		500GeV F	Reference		Straw-r	nan TeV	
		no TF	TF	-		300MW 10% BS	÷.
Ecm	GeV	500	500		1000	1000	
gamma		4.89E+05	4.89E+05		9.78E+05	9.78E+05	
N	e10	2.0	2.0		2.0	2.0	
frep	Hz	5.0	5.0		4.0	4.0	
Nb		1312	1312		2280	2280	
PB	MW	10.5	10.5		29.2	29.2	
sigz	mm	0.3	0.3		0.25	0.15	
enx	m	1.0E-05	1.0E-05		1.0E-05	1.0E-05	
eny	m	3.5E-08	3.5E-08		3.0E-08	3.0E-08	
betax	mm	11.00	11.00		30.00	18.00	
betay	mm	0.48	0.20		0.25	0.15	
sigx	nm	474.2	474.2		553.7	428.9	
sigy	nm	5.9	3.8		2.8	2.1	
theta_x	ur	43.1	43.1		18.5	23.8	
theta_y	ur	12.2	18.9		11.1	14.3	
Dx		0.3	0.3		0.1	0.1	
Dy		24.6	38.2		18.7	18.7	
Upsilon		0.1	0.1		0.1	0.3	
Ngamma		1.7	1.7		1.4	1.7	
deltaB		4%	4%		5%	11%	
HDx		1.1	1.1		1.0	1.0	
HDy		6.1	2.8		3.5	3.5	
HDy		2.0	1.5		1.5	1.5	
D p/p e+	%	0.087	0.087		0.033	0.048	
Dp/p e-	%	0.22	0.22		0.20	0.20	
Pe+	%	22	22		30	30	
Pe-	%	80	80		80	80	
L					1.55E+34	2.58E+34	
Lgeo		7.51E+33	1.16E+34		1.89E+34	3.16E+34	
L (formula)		1.47E+34	1.75E+34		2.89E+34	4.82E+34	
Simulation (noTF	.)						
Ngamma					1.443	1.753	
deltaB(%)		4.30			5.284	9.823	
L		1.49E+34			2.825E+34	4.76E+43	
L(1%)		62.5			62.1	50.2	
Simulation (TF)							
Ngamma					1.444	1.759	
deltaB(%)			4.33		5.258	9.826	
L			2.05E+34		3.375E+34	5.639E+43	
L(1%)			60.8		60.7	48.5	
L(TR)/L(no)	• •			•	1.19	1.18	٠

B. Foster - PECFACERN - 11/11

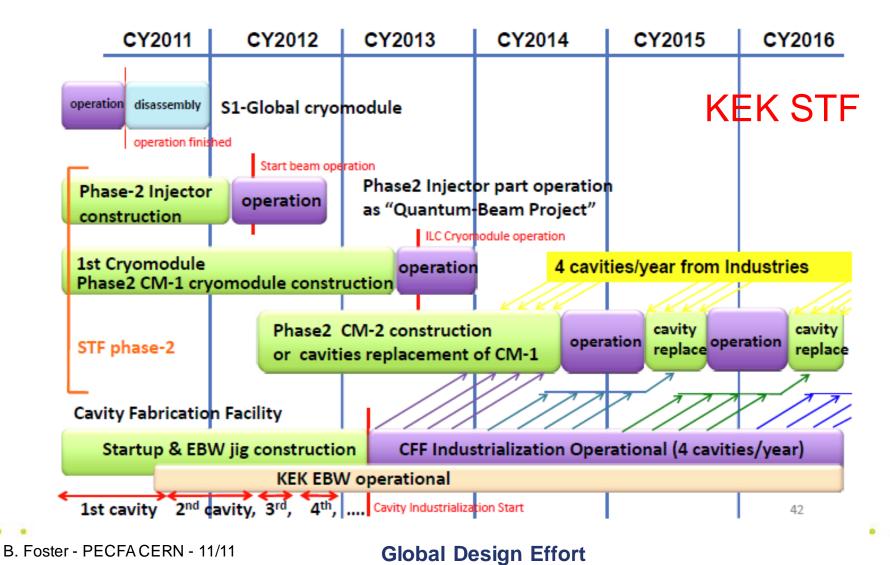

From RDR -> TDR

System Tests

Systems tests in all 3 regions well beyond 2012:

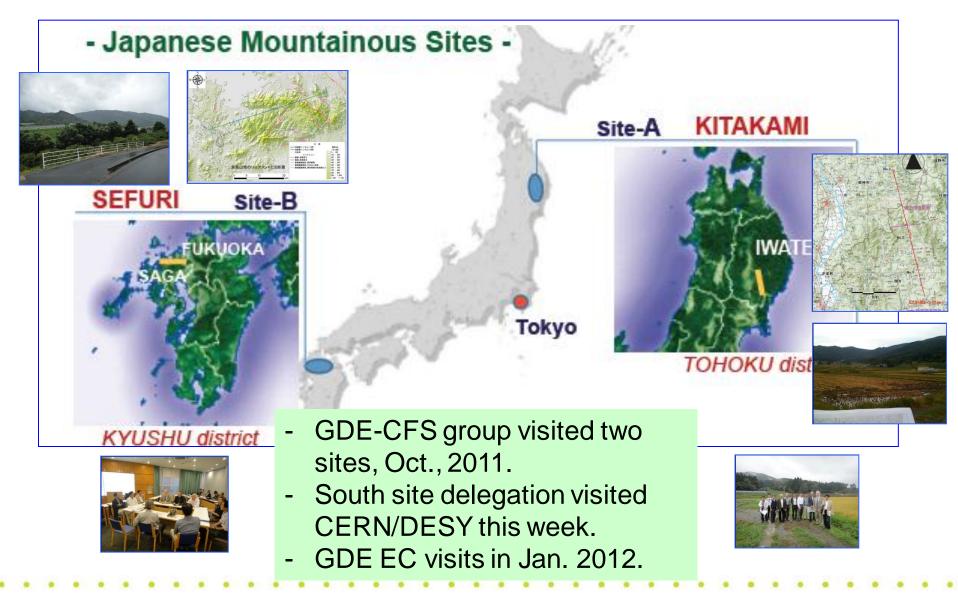
Full beam-loading long pulse operation \rightarrow "S2"

B. Foster - PECFACERN - 11/11


İİL

System Tests

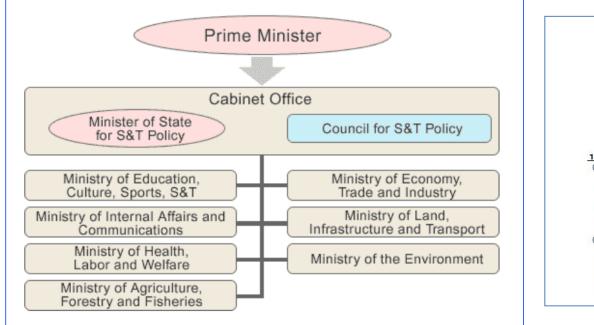
Systems tests in all 3 regions well beyond 2012:

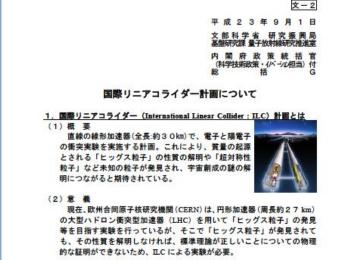

:lr

İİĻ

17

CFS Study: Progress in Japan

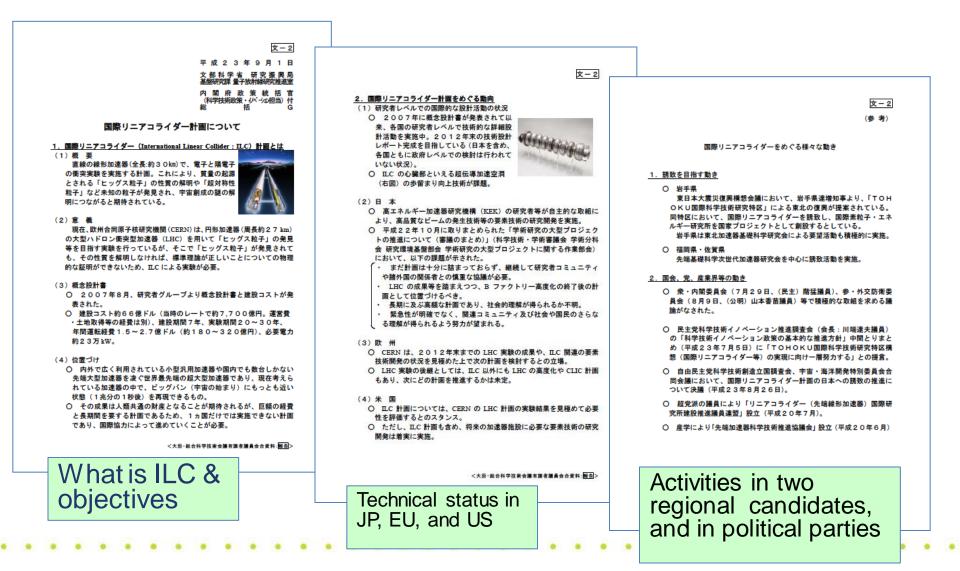

CFS Study: Progress in Japan


ir

JFY	Progress
2009	AAA volunteered to study 'ILC tunnel design' for SB2009,
2010	Local communities (LCs) organized geological survey by themselves. KEK studied 8 cases of the tunnel design, and reached a 'Bread-shape (Kamaboko) shape tunnel' to be an economical candidate, specifically, in Japanese mountainous regions.
2011	 AAA re-volunteered to evaluate the tunnel design and environmental conditions, to assist KEK. LCs reported the geological survey to KEK. KEK going to progress the engineering work of tunneling, electrical, and mechanical issues, based on the information given by AAA and LCs, Japanese Civil Engineer Association is active to professionally assess the geological surveys and civil engineering. S&T Policy Council of the Cabinet received a brief report from MEXT on Sept. 1, on science objectives of the ILC project and global status. A Supplemental Budget being discussed at the Diet to encourage/boost recovery of national and regional activities. It may include some support for further site-dependent geological studies at the candidate sites in cooperation of KEK with the local communities (universities, and local Gov.)

Council for Science and Technology Policy

 ILC science objectives and global status was reported to the Japanese Government Council from MEXT, Sept. 1



http://www8.cao.go.jp/cstp/gaiyo/yusikisha/20110901/siryobun-2.pdf

Introduction and Status Report discussed Sept. 1, 2011

İİĹ

- The ILC is a machine that could be built tomorrow; in the TDR we will define a design which is optimised to produce the required performance while containing inevitable increases in cost.
- After the GDE's mandate ends, a successor organisation needs to maintain essential expertise and supervise remaining system tests/site-specific design.
- Encouraging signs of real interest in proposing sites in Japan. Nothing will happen soon, but slowly, things seem to be crystallising.