International School Cargese 2012 : Accross the TeV frontier with the LHC

New Resonances at the Pierre Auger Observatory

Florian Lyonnet with Tomáš Ježo under the supervision of Ingo Schienbein

> Laboratoire de Physique Subatomique et de Cosmologie Université Joseph Fourier

> > Grenoble

August, 27 2012

Introduction	Models	Cross Sections	
•	O	o	
Introductio	n		
W', Z' во	sons	Deep Inelastic Scatterir	VG (DIS),
@ РА	O	Glashow Resonance (Gl	2) @ LO

Introduction •	Models O	Cross Sections 0	
Introduction			
W', Z' Boson @ PAO	s Deel Glasl	p Inelastic Scatter how Resonance (1	ring (DIS), GR)@LO
p	X(p')	$e^ B(q)$ \bar{f}'	

Motivations

- **Ultra-high energy neutrino** $\sim 10^{10} \text{GeV} \Rightarrow \sqrt{s} \simeq 100 \text{ TeV}$
- Possibility of probing new physics scenarios beyond the reach of the LHC
- GR contributes only in BSM models making it a very good probe (@PAO)

Introduction •	Models O	Cross Sections Event Rates 0 0
Introduction	N	
W', Z' возо @ РАС	ons	Deep Inelastic Scattering (DIS), Glashow Resonance (GR) @ LO
L(k)		$\overline{\nu}_e$ g_B g_B g_B
		$X(p)$ e^{-} f

Motivations

 \mathcal{D}

- **Ultra-high energy neutrino** $\sim 10^{10} \text{GeV} \Rightarrow \sqrt{s} \simeq 100 \text{ TeV}$
- Possibility of probing new physics scenarios beyond the reach of the LHC
- GR contributes only in BSM models making it a very good probe (@PAO)

Introduction O	Models •	Cross Sections O	Event Rates O
Models st	SM G221 (UL) (P) (F) (NU) (P) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F)	UU : Un-un NU : Non-u HP : Hadro FP : Fermic LR : Left-R LP : Lepto- SSM i.e. $M_{B'} = \alpha M_B$	nified universal -phobic D-phobic Light phobic Quential SM
G ₂₂₁			
■ G ₂₂₁ ≡	$\equiv SU(2)_1 imes SU(2)_2 imes$	$U(1)_X$	
🗖 Two p	parameters: tan ϕ, M_{E}	31	

■ Breaking Pattern, Higgs Sector, Particle content $\Rightarrow UU, NU, LR/LP, HP/FP$

		Models O	Cross Sections •	
~	~			

Cross Sections

Modification up to 1%

GR' in the PAO energy range of sensitivity

Introd 0	uction	Models O	Cross Sections O	Event Rates ●
E	vent Rates			
	Observable			
	 ν_µ, ν_e downw 	ard-going n	neutrinos	
	CC, NC, GR	nterference	s for all the models above	

12 14 16

 $M_{V'}$ [TeV]

Florian LYONNET

2 Δ 6

0.990

New Resonances at the PAO - Cargese summer school 2012 August, 27 2012 5 / 5

Models	Cross Sections	

Neutrino cosmogenic flux

$$p + \gamma_{CMB/IR} \rightarrow \Delta \rightarrow p + \pi^0$$
 or
 $p + \gamma_{CMB/IR} \rightarrow \Delta \rightarrow n + \pi^+$

$$\pi^+ \to \mu^+ + \bar{\nu}_\mu$$

$$\pi^0 \rightarrow \gamma \gamma \ P = 0.92$$
 or
 $\pi^0 \rightarrow \gamma + e^- + e^+ \ P = 0.012$

6 / 5

 $n \rightarrow p + e^- + \bar{\nu}_e$

	Models	Cross Sections	
0	0	0	0

The couplings of Z'- and W'-bosons to the SM fermions in the category of left-handed models can be written as:

$$C_{1,L}^{W'} \simeq \frac{1}{t}$$
 $C_{1,R}^{W'} = 0$ (1)

$$C_{2,L}^{W'} \simeq -t$$
 $C_{2,R}^{W'} = 0$ (2)

$$C_{1,L}^{Z'} \simeq T_3(f) c_{\theta} \frac{1}{t}$$
 $C_{1,R}^{Z'} \simeq 0$ (3)

$$C_{2,L}^{Z'} \simeq -T_3(f)c_{\theta}t \qquad \qquad C_{2,R}^{Z'} \simeq 0 \;, \tag{4}$$

where label index 1 is a placeholder for q in Un-unified and 1^{st} , 2^{nd} in Non-universal model, while label index 2 is a placeholder for I in Un-unified and 3^{rd} for Non-universal model.

Models	Cross Sections	

Theory motivated extensions of the SM

G_{221} models

 $\blacksquare SU(2)_1 \times SU(2)_2 \times U(1)_X \to G_{221} class$

Different breaking patterns give the following models

1)
$$\underbrace{SU(2)_{1} \times SU(2)_{2}}_{SU(2)_{L}} \times \underbrace{U(1)_{X}}_{U(1)_{Y}} \rightarrow \text{Un-Unified, Non-Universal}$$
2)
$$\underbrace{SU(2)_{1}}_{SU(2)_{1}} \times \underbrace{SU(2)_{2} \times U(1)_{X}}_{U(1)_{e.m.}} \rightarrow \text{Left-Right, Lepto-Phobic}$$

$$\underbrace{U(1)_{e.m.}}_{U(1)_{e.m.}} \rightarrow \text{Left-Right, Lepto-Phobic}$$

Models	Cross Sections	

Theory motivated extensions of the SM

Cat.	Model	<i>SU</i> (2) ₁	SU(2) ₂	$U(1)_X$
t-handed	Un-unified (UU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$Y_{\rm SM}$ for all fermions.
Lef	Non-universal (NU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}_{1^{\text{st}},2^{\text{nd}}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{1^{\text{st}},2^{\text{nd}}}$	$\begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}_{3^{rd}}, \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}_{3^{rd}}$	$Y_{\rm SM}$ for all fermions.
t-handed	Left-right (LR)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\begin{pmatrix} u_{R} \\ d_{R} \end{pmatrix}, \begin{pmatrix} \nu_{R} \\ e_{R} \end{pmatrix}$	$\frac{1}{6}$ for quarks, $-\frac{1}{2}$ for leptons.
Right	Lepto-phobic (LP)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\begin{pmatrix} u_R \\ d_R \end{pmatrix}$	$rac{1}{6}$ for quarks, Y_{SM} for leptons.

Florian LYONNET

Models	Cross Sections	

Theory motivated extensions of the SM

Cat.	Model	<i>SU</i> (2) ₁	<i>SU</i> (2) ₂	$U(1)_X$
t-handed	Un-unified (UU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$Y_{\rm SM}$ for all fermions.
Left	Non-universal (NU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}_{1^{\text{st}},2^{\text{nd}}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{1^{\text{st}},2^{\text{nd}}}$	$\begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix}_{3^{rd}}, \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}_{3^{rd}}$	$Y_{\rm SM}$ for all fermions.
Right-handed	Left-right (LR)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\begin{pmatrix} u_{R} \\ d_{R} \end{pmatrix}, \begin{pmatrix} \nu_{R} \\ e_{R} \end{pmatrix}$	$\frac{1}{6}$ for quarks, $-\frac{1}{2}$ for leptons.
	Lepto-phobic (LP)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\begin{pmatrix} u_R \\ d_R \end{pmatrix}$	$rac{1}{6}$ for quarks, Y_{SM} for leptons.

Free parameters: t, M_{W'}, M_{Z'}; M_{Z'} = f(M_{W'}, t)
 t ≡ tan φ, first stage symmetry breaking angle

Models	Cross Sections	

Models	Cross Sections	

Models O	Cross Sections o	

Zp couplings

	$\overline{u}\gamma^{\mu}u$	$\overline{d}\gamma^{\mu}d$	$\overline{ u}\gamma^{\mu} u$	$\overline{e}\gamma^{\mu}e$
LR	$(rac{1}{2}c_{ ilde{\phi}} ilde{g}_2-rac{1}{6}s_{ ilde{\phi}} ilde{g}_X)P_{ ext{R}}$	$(-rac{1}{2}c_{ ilde{\phi}} ilde{g}_2-rac{1}{6}s_{ ilde{\phi}} ilde{g}_X)P_{ ext{ iny R}}$	$(rac{1}{2}c_{ ilde{\phi}} ilde{g}_2+rac{1}{2}s_{ ilde{\phi}} ilde{g}_X)P_{ ext{ ext{ iny R}}}$	$(-rac{1}{2}c_{ ilde{\phi}} ilde{g}_2+rac{1}{2}s_{ ilde{\phi}} ilde{g}_{\scriptscriptstyle X})P_{\scriptscriptstyle m R}$
LIL	$-rac{1}{6}s_{ ilde{\phi}} ilde{g}_{\scriptscriptstyle X}P_{\scriptscriptstyle m L}$	$-rac{1}{6}s_{ ilde{\phi}} ilde{g}_{X}P_{ ext{L}}$	$+rac{1}{2}s_{ ilde{\phi}} ilde{g}_{\scriptscriptstyle X}P_{\scriptscriptstyle m L}$	$+rac{1}{2}s_{ ilde{\phi}} ilde{g}_{X}P_{ ext{L}}$
LP	$egin{aligned} &(rac{1}{2}c_{ ilde{\phi}} ilde{g}_2-rac{1}{6}s_{ ilde{\phi}} ilde{g}_X)P_{ ext{r}}\ &-rac{1}{6}s_{ ilde{\phi}} ilde{g}_XP_{ ext{L}} \end{aligned}$	$(-rac{1}{2}c_{ ilde{\phi}} ilde{g}_2-rac{1}{6}s_{ ilde{\phi}} ilde{g}_X)P_{ ext{R}}\ -rac{1}{6}s_{ ilde{\phi}} ilde{g}_XP_{ ext{L}}$	$rac{1}{2}s_{ ilde{\phi}} ilde{g}_X P_{ m L}$	$s_{ ilde{\phi}} ilde{g}_{\scriptscriptstyle X}(frac{1}{2} P_{\scriptscriptstyle m L} + P_{\scriptscriptstyle m R})$
HP	$-s_{ ilde{\phi}} ilde{g}_{\scriptscriptstyle X}(frac{1}{6}P_{\scriptscriptstyle m L}+ frac{2}{3}P_{\scriptscriptstyle m R})$	$-s_{ ilde{\phi}} ilde{g}_{\scriptscriptstyle X}(frac{1}{6}P_{\scriptscriptstyle m L}- frac{1}{3}P_{\scriptscriptstyle m R})$	$egin{aligned} &(rac{1}{2}c_{ ilde{\phi}} ilde{g}_2+rac{1}{2}s_{ ilde{\phi}} ilde{g}_X)P_{ ext{ iny R}} \ &+rac{1}{2}s_{ ilde{\phi}} ilde{g}_XP_{ ext{ iny L}} \end{aligned}$	$egin{aligned} &(-rac{1}{2}c_{ ilde{\phi}} ilde{g}_2+rac{1}{2}s_{ ilde{\phi}} ilde{g}_X)P_{ ext{ iny R}} \ &+rac{1}{2}s_{ ilde{\phi}} ilde{g}_XP_{ ext{ iny L}} \end{aligned}$
FP	$-s_{ ilde{\phi}} ilde{g}_{\scriptscriptstyle X}(frac{1}{6}P_{\scriptscriptstyle m L}+ frac{2}{3}P_{\scriptscriptstyle m R})$	$-s_{ ilde{\phi}} ilde{g}_{\scriptscriptstyle X}(frac{1}{6}P_{\scriptscriptstyle m L}- frac{1}{3}P_{\scriptscriptstyle m R})$	$rac{1}{2}s_{ ilde{\phi}} ilde{g}_{X}P_{ ext{L}}$	$s_{ ilde{\phi}} ilde{g}_{\scriptscriptstyle X}(frac{1}{2} P_{\scriptscriptstyle m L} + P_{\scriptscriptstyle m R})$
UU	$rac{1}{2}c_{ ilde{\phi}} ilde{g}_1P_{ ext{L}}$	$-rac{1}{2}c_{ ilde{\phi}} ilde{g}_1P_{ ext{L}}$	$-rac{1}{2}s_{ ilde{\phi}} ilde{g}_2P_{ ext{L}}$	$rac{1}{2}s_{ ilde{\phi}} ilde{g}_2P_{ ext{L}}$
NU	$rac{1}{2}egin{pmatrix} c_{ ilde{\phi}} ilde{g}_1\ -s_{ ilde{\phi}} ilde{g}_2 \end{pmatrix}P_{ ext{L}}$	$-rac{1}{2}egin{pmatrix} c_{ ilde{\phi}} ilde{g}_1\ -s_{ ilde{\phi}} ilde{g}_2 \end{pmatrix}P_{ ext{L}}$	$rac{1}{2}egin{pmatrix} c_{ ilde{\phi}} ilde{g}_1\ -s_{ ilde{\phi}} ilde{g}_2 \end{pmatrix}P_{ ext{L}}$	$-rac{1}{2}egin{pmatrix} c_{ ilde{\phi}} ilde{g}_1\ -s_{ ilde{\phi}} ilde{g}_2 \end{pmatrix}P_{ m L}$

Models	Cross Sections	

Wp couplings

	$\overline{d}\gamma^{\mu}u$	$\overline{e}\gamma^{\mu} u$
\mathbf{LR}	$rac{1}{\sqrt{2}} ilde{g}_2 P_{ m R}$	$rac{1}{\sqrt{2}} ilde{g}_2 P_{ m R}$
\mathbf{LP}	$rac{1}{\sqrt{2}} ilde{g}_2 P_{ m R}$	0
HP	0	$rac{1}{\sqrt{2}} ilde{g}_2 P_{ m R}$
\mathbf{FP}	0	0
UU	$rac{1}{\sqrt{2}}c_{ ilde{\phi}} ilde{g}_1P_{ ext{L}}$	$-rac{1}{\sqrt{2}}s_{ ilde{\phi}} ilde{g}_2P_{ m L}$
NU	$\left rac{1}{\sqrt{2}} egin{pmatrix} c_{ ilde{\phi}} ilde{g}_1 \ -s_{ ilde{\phi}} ilde{g}_2 \end{pmatrix} P_{ m L} ight $	$rac{1}{\sqrt{2}}egin{pmatrix} c_{ ilde{\phi}} ilde{g}_1\ -s_{ ilde{\phi}} ilde{g}_2 \end{pmatrix}P_{ m L}$