Introduction to Collider Physics

Maxim Perelstein, LEPP/Cornell University August 21-22, 2012, Cargese

Parton Distribution Functions (PDFs)

Figure 1: MSTW 2008 NLO PDFs at $Q^2 = 10 \text{ GeV}^2$ and $Q^2 = 10^4 \text{ GeV}^2$.

Martin, Stirling, Thorne, Watt, 0901.0002

$$\begin{split} xu_v(x,Q_0^2) &= A_u \, x^{\eta_1} (1-x)^{\eta_2} (1+\epsilon_u \, \sqrt{x}+\gamma_u \, x), \\ xd_v(x,Q_0^2) &= A_d \, x^{\eta_3} (1-x)^{\eta_4} (1+\epsilon_d \, \sqrt{x}+\gamma_d \, x), \\ xS(x,Q_0^2) &= A_S \, x^{\delta_S} (1-x)^{\eta_S} (1+\epsilon_S \, \sqrt{x}+\gamma_S \, x), \\ x\Delta(x,Q_0^2) &= A_\Delta \, x^{\eta\Delta} (1-x)^{\eta_S+2} (1+\gamma_\Delta \, x+\delta_\Delta \, x^2), \\ xg(x,Q_0^2) &= A_g \, x^{\delta_g} (1-x)^{\eta_g} (1+\epsilon_g \, \sqrt{x}+\gamma_g \, x) + A_{g'} \, x^{\delta_{g'}} (1-x)^{\eta_{g'}}, \\ x(s+\bar{s})(x,Q_0^2) &= A_+ \, x^{\delta_S} \, (1-x)^{\eta_+} (1+\epsilon_S \, \sqrt{x}+\gamma_S \, x), \\ x(s-\bar{s})(x,Q_0^2) &= A_- \, x^{\delta_-} (1-x)^{\eta_-} (1-x/x_0), \end{split}$$

Process	Subprocess	Partons	x range
$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} X$	$\gamma^* q \to q$	q, ar q, g	$x \gtrsim 0.01$
$\ell^{\pm} n/p \to \ell^{\pm} X$	$\gamma^* d/u \to d/u$	d/u	$x \gtrsim 0.01$
$pp \to \mu^+ \mu^- X$	$u\bar{u}, d\bar{d} \to \gamma^*$	$ar{q}$	$0.015 \lesssim x \lesssim 0.35$
$pn/pp \rightarrow \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	${ar d}/{ar u}$	$0.015 \lesssim x \lesssim 0.35$
$ u(\bar{\nu}) N \to \mu^-(\mu^+) X $	$W^*q \to q'$	q, ar q	$0.01 \lesssim x \lesssim 0.5$
$\nu N \to \mu^- \mu^+ X$	$W^*s \to c$	s	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu} N \to \mu^+ \mu^- X$	$W^*\bar{s} \to \bar{c}$	\overline{S}	$0.01 \lesssim x \lesssim 0.2$
$e^{\pm} p \to e^{\pm} X$	$\gamma^* q \to q$	g,q,\overline{q}	$0.0001 \lesssim x \lesssim 0.1$
$e^+ p \to \bar{\nu} X$	$W^+\left\{d,s\right\} \to \left\{u,c\right\}$	d,s	$x \gtrsim 0.01$
$e^{\pm}p \to e^{\pm} c \bar{c} X$	$\gamma^* c \to c, \ \gamma^* g \to c \bar{c}$	c, g	$0.0001 \lesssim x \lesssim 0.01$
$e^{\pm}p \to \text{jet} + X$	$\gamma^*g \to q\bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$
$p\bar{p} \to (W^{\pm} \to \ell^{\pm}\nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	u, d, \bar{u}, \bar{d}	$x \gtrsim 0.05$
$p\bar{p} \to (Z \to \ell^+ \ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$

MSTW, 0901.0002

Parameter	LO		NLO		NNLO	
$\alpha_S(Q_0^2)$	0.68183		0.49128		0.45077	
$\alpha_S(M_Z^2)$	0.13939		0.12018		0.11707	
Au	1.4335		0.25871		0.22250	
η_1	0.45232	$+0.022 \\ -0.018$	0.29065	$^{+0.019}_{-0.013}$	0.27871	$+0.018 \\ -0.014$
η_2	3.0409	+0.079 -0.067	3.2432	$+0.062 \\ -0.039$	3.3627	+0.061 -0.044
ϵ_u	-2.3737	$+0.54 \\ -0.48$	4.0603	$^{+1.6}_{-2.3}$	4.4343	$^{+2.4}_{-2.7}$
γ_u	8.9924		30.687		38.599	
A_d	5.0903		12.288		17.938	
η_3	0.71978	$^{+0.057}_{-0.082}$	0.96809	$^{+0.11}_{-0.11}$	1.0839	$^{+0.12}_{-0.11}$
$\eta_4 - \eta_2$	2.0835	$^{+0.32}_{-0.45}$	2.7003	$^{+0.50}_{-0.52}$	2.7865	$^{+0.50}_{-0.44}$
ϵ_d	-4.3654	$^{+0.28}_{-0.22}$	-3.8911	$^{+0.31}_{-0.29}$	-3.6387	$^{+0.27}_{-0.28}$
γ_d	7.4730		6.0542		5.2577	
A_S	0.59964	$^{+0.036}_{-0.030}$	0.31620	$^{+0.030}_{-0.021}$	0.64942	$+0.047 \\ -0.041$
δ_S	-0.16276		-0.21515		-0.11912	
η_S	8.8801	$^{+0.33}_{-0.33}$	9.2726	$^{+0.23}_{-0.33}$	9.4189	$^{+0.25}_{-0.33}$
ϵ_S	-2.9012	$^{+0.33}_{-0.37}$	-2.6022	$^{+0.71}_{-0.96}$	-2.6287	$^{+0.49}_{-0.51}$
γ_S	16.865		30.785		18.065	
$\int_0^1 \mathrm{d}x \Delta(x,Q_0^2)$	0.091031	$^{+0.012}_{-0.009}$	0.087673	$^{+0.013}_{-0.011}$	0.078167	$^{+0.012}_{-0.0091}$
A_{Δ}	8.9413		8.1084		16.244	
η_{Δ}	1.8760	$^{+0.24}_{-0.30}$	1.8691	$^{+0.23}_{-0.32}$	2.0741	$^{+0.18}_{-0.35}$
γ_{Δ}	8.4703	$^{+2.0}_{-0.3}$	13.609	$^{+1.1}_{-0.6}$	6.7640	+0.77 -0.41
δ_{Δ}	-36.507		-59.289		-36.090	
A_g	0.0012216	10.15	1.0805		3.4055	10.00
δ_g	-0.83657	+0.15 -0.14	-0.42848	+0.066 -0.057	-0.12178	+0.23 -0.16
η_g	2.3882	+0.51 -0.50	3.0225	$^{+0.43}_{-0.36}$	2.9278	$+0.08 \\ -0.41$
ϵ_g	-38.997	+30 -35	-2.2922		-2.3210	
γ_g	1445.5	$+880 \\ -750$	3.4894		1.9233	
$A_{g'}$	_		-1.1168	10.052	-1.6189	10.14
$\delta_{g'}$	—		-0.42776	+0.053 -0.047	-0.23999	+0.14 -0.10
$\eta_{g'}$	<u> </u>	0.000	32.869	+0.5 -5.9	24.792	+0.3 -5.2
A_+	0.10302	+0.029 -0.017	0.047915	+0.0095 -0.0076	0.10455	+0.019 -0.016
η_+	13.242	$^{+2.9}_{-1.4}$	9.7466	+1.0 -0.8	9.8689	+1.0 -0.6
A_{-}	-0.011523	+0.009 -0.018	-0.011629	+0.009 -0.023	-0.0093692	+0.006 -0.024
η_{-}	10.285	$^{+10}_{-6}$	11.261	$^{+22}_{-6}$	9.5783	$^{+20}_{-5}$
x_0	0.017414		0.016050		0.018556	
r_1	-0.39484		-0.57631		-0.80834	
r_2	-1.0719		0.81878		1.2669	
r_3	-0.28973		-0.083208		0.15098	

Parton kinematics

Plot credit: S.-O. Moch

DGLAP evolution: at higher Q2, parton densities shift towards low x

Plot: S.-O. Moch, KITP talk, 2008

Monday, August 20, 2012

http://durpdg.dur.ac.uk/cgi-bin/hepdata/pdfplot2

http://durpdg.dur.ac.uk/cgi-bin/hepdata/pdfplot2

http://durpdg.dur.ac.uk/cgi-bin/hepdata/pdfplot2

Electroweak Boson Production

Parton kinematics

S.-O. Moch, KITP talk, 2008

CMS Experiment at LHC, CERN Run 135149, Event 125426133 Lumi section: 1345 Sun May 09 2010, 05:24:09 CEST

Muon $p_T = 67.3, 50.6 \text{ GeV/c}$ Inv. mass = 93.2 GeV/c²

CMS-EWK-10-005, arXiv:1107.4789

CMS-EWK-10-005, arXiv:1107.4789

http://www-cdf.fnal.gov/physics/ewk/2008/wmass/

Z+Jets at the Tevatron

D0, PRL 100, 102002 (2008)

D0, PLB 658, 112 (2008)

To Learn More:

- TASI-09 lectures: arXiv:1002.0274
- Cornell Collider Physics class (2009):

http://www.lepp.cornell.edu/~maxim/P661/

Contact me to get access to video recordings on the class:

mp325@cornell.edu