Precision Jet Substructure

Ilya Feige

Cargèse 2012

Harvard University

August 21, 2012

work done in collaboration with: Matthew D. Schwartz, Iain W. Stewart and Jesse Thaler

arXiv: 1204.3898

Ilya Feige (Harvard University)

Precision Jet Substructure

August 21, 2012 1 / 6

why substructure?

we want to be able to distinguish between

why substructure?

we want to be able to distinguish between

that is, we want to be able to say

why substructure?

we want to be able to distinguish between

that is, we want to be able to say

this significantly improves searches involving heavy boosted objects

case study: the Higgs [Butterworth, Davison, Rubin, Salam]

N-subjettiness

definition

$$\mathcal{T}_N \equiv \min_{n_1,\dots,n_N} \sum_{j \in J} \min\{n_1 \cdot p_j,\dots,n_N \cdot p_j\}.$$

Example

Precision Jet Substructure

N-subjettiness

definition

$$\mathcal{T}_N \equiv \min_{n_1,\dots,n_N} \sum_{j \in J} \min\{n_1 \cdot p_j,\dots,n_N \cdot p_j\}.$$

how it's used [Thaler, Van Tilburg]

- $\mathcal{T}_N \ll 1 \implies \text{jet with} \le N \text{ subjets}$
- $\mathcal{T}_N \gg 0 \implies \text{jet with} > N \text{ subjets}$
- $\mathcal{T}_{N/N-1} \equiv \mathcal{T}_N/\mathcal{T}_{N-1}$ good for identifying boosted heavy objects

Results

$$\frac{d\sigma}{d\mathcal{T}_{2/1}}$$
 for a boosted Z with $p_Z = (\sqrt{Q^2 + m_Z^2}, 0, 0, Q)$:

Thank you!

Corrections

can we apply this calculation to LHC scenarios? in real life:

- we put cones around our jets
- initial states can radiate (ISR)
- complicated interactions happen when protons collide (UE)
- final states radiate into our jet (FSR)

we will show that these effects can be dealt with in the large Q limit

cone effects $\sim 1/Q$

effects of cone get suppressed in large Q limit

cone effects $\sim 1/Q$

effects of cone get suppressed in large Q limit

cone effects $\sim 1/Q$

effects of cone get suppressed in large Q limit

cone effects $\sim 1/Q$

effects of cone get suppressed in large Q limit

so cone effects are dealt with

Corrections: ISR/UE/FSR

radiation not from the Z (ISR/UE/FSR)

$$Q \to \infty \implies n_{1,2}^{\mu} = n^{\mu} + \mathcal{O}\left(\frac{m_Z}{Q}\right) \implies (\mathcal{T}_2 - \mathcal{T}_1)_{ISR/\dots} \sim 1/Q \mathcal{T}_2$$

Corrections: ISR/UE/FSR

radiation not from the $Z~(\mathrm{ISR}/\mathrm{UE}/\mathrm{FSR})$

$$Q \to \infty \implies n_{1,2}^{\mu} = n^{\mu} + \mathcal{O}\left(\frac{m_Z}{Q}\right) \implies (\mathcal{T}_2 - \mathcal{T}_1)_{ISR/\dots} \sim 1/Q \mathcal{T}_2$$

1-subjettiness

$$\mathcal{T}_1 = \min_n \sum_{j \in J} p_j \cdot n = n \cdot P_J$$

if no UE/ISR/FSR

$$\widehat{\mathcal{T}}_1 = n \cdot P_Z = \sqrt{Q^2 + m_Z^2} - Q$$

so $\Delta \tau \equiv \mathcal{T}_1 - \hat{\mathcal{T}}_1$ measures amount of jet contamination

Corrections: ISR/UE/FSR

radiation not from the $Z~(\mathrm{ISR}/\mathrm{UE}/\mathrm{FSR})$

,

.

$$Q \to \infty \implies n_{1,2}^{\mu} = n^{\mu} + \mathcal{O}\left(\frac{m_Z}{Q}\right) \implies (\mathcal{T}_2 - \mathcal{T}_1)_{ISR/\dots} \sim 1/Q \mathcal{T}_2$$

1-subjettiness

$$\mathcal{T}_1 = \min_n \sum_{j \in J} p_j \cdot n = n \cdot P_J$$

if no UE/ISR/FSR

$$\widehat{\mathcal{T}}_1 = n \cdot P_Z = \sqrt{Q^2 + m_Z^2} - Q$$

so $\Delta \tau \equiv \mathcal{T}_1 - \hat{\mathcal{T}}_1$ measures amount of jet contamination

define a new observable

$$\tau_{21} \equiv \frac{\mathcal{T}_2 - \mathcal{T}_1 + \widehat{\mathcal{T}}_1}{\mathcal{T}_1 - \mathcal{T}_1 + \widehat{\mathcal{T}}_1} = \frac{\mathcal{T}_2 - \Delta \tau}{\mathcal{T}_1 - \Delta \tau} \implies (\tau_{21})_{ISR/UE} \sim 1/Q$$
lya Feige (Harvard University) Precision Jet Substructure August 21, 2012 6 / 6

Results II

Thank you!

Q Scaling

effect of adding ISR/UE with $\Delta \tau$ correction go like 1/Q

Finite Width Effect

Signal vs. Background

Signal vs. Background

Q-scaling

non-perturbative shift from thrust

