Hierarchy in Quiver Models

Leonardo de Lima

with Gustavo Burdman and Nayara Fonseca de Sá

São Paulo University

The Randall-Sundrum Model

• Describes a 5-dimensional universe with the geometry of a slice of AdS_5/\mathbb{Z}_2 :

- Metric: $g_{MN} dx^M dx^N = e^{-2ky} \eta_{\mu\nu} dx^\mu dx^\nu dy^2, \\ 0 < y < \pi R$
- Energy scales are naturally warped down by the factor: $e^{-k\pi R}$
- With the Higgs localized at the IR brane, the gauge hierarchy problem is solved for $k\pi R \sim 37$.

The Randall-Sundrum Model

 The fermionic KK modes have the profile:

$$h_{L(R)}^{(0)}(y) = N(c)e^{(1/2\mp c)ky},$$

• Fermion masses are determined by the localization (bulk mass) parameter, of order $\mathcal{O}(1)$.

 $h_L^{(0)}$ by c_L . Presented are $c_L = 0.5$ (green), $c_L = 1.1$ (red), $c_L = -0.1$ (blue).

The Randall-Sundrum Model

Gauge couplings come from the integral:

$$g_{(0,1)}^{L,R} = \frac{g}{(\pi R)} \int_0^{\pi R} dy \ e^{ky} f^{(1)}(y) |h_{L,R}^{(0)}(y)|^2$$

- UV couplings are universal, mostly supressing flavor violation (RS-GIM).
- However, it's not enough for Kaon mixing (Csáki, C. et al. - 2008).

$$\Rightarrow m_{KK} \gtrsim 30$$
 TeV.

Dimensional Deconstruction

- A four dimensional gauge theory with N+1 gauge groups: $G = G_0 \times G_1 \times ... \times G_{N-1} \times G_N$.
- Gauge fields are conected by scalars, called link fields, transforming as: Φ_j → L_{j-1}Φ_jR_j[†].
- If all groups and couplings are equal, this linear moose mimics an extra dimension of size $L = (N + 1)\ell$ for large N.
- This is the idea of Dimensional Deconstruction (Arkani-Hamed et al. 2001 and Hill et al. 2001).

Dimensional Deconstruction

• The gauge plus links action is:

$$S_4 = \int d^4x \sum_{j=0}^N \left\{ -\frac{1}{2g^2} \mathrm{Tr}(F_{\mu\nu,ja} \, F_j^{\mu\nu a}) + \mathrm{Tr} \left[(\mathcal{D}_\mu \Phi_j)^\dagger (\mathcal{D}^\mu \Phi_j) \right] - V(\Phi) \right\}$$
 with $\mathcal{D}_\mu \Phi_j = \partial_\mu \, \Phi_j + i \, A_{\mu,j-1a} \, T^a \, \Phi_j - i \, \Phi_j \, A_{\mu,ja} \, T^a$.

- We assume a potential that gives the Φ_j diagonal vevs, breaking $SU(m)_L^j \times SU(m)_R^j \to SU(m)_V^j$.
- The massive state (KK mode like) tower is truncated at N+1 states.

Dictionary

This model can be matched onto a discretized Randall-Sundrum model:

$$S_5 = \frac{\ell}{g_5^2} \int d^4x \sum_{j=0}^N \left[-\frac{1}{2} {\rm Tr}(F_{\mu\nu,j} F_j^{\mu\nu}) + \frac{1}{2} e^{-2k\ell j} {\rm Tr} \left(\frac{A_{\mu,j} - A_{\mu,j-1}}{\ell} \right)^2 \right]$$

- The AdS_5 warping can be mimicked if the vevs scale as: $v_i = vq^j$, 0 < q < 1.
- Setting up a dictionary:

$$\begin{array}{ccc} VQ^{j} & \leftrightarrow & \frac{e^{-k\ell j}}{\ell g_{5}} \\ \frac{1}{g^{2}} & \leftrightarrow & \frac{\ell}{g_{5}^{2}} \end{array}$$

- The gauge hierarchy is generated if: $q = e^{-k\ell} \sim e^{-\frac{16 \ln 10}{N}} \simeq e^{-\frac{37}{N}}$ and $v \sim M_P = 10^{19}$ GeV.
- Fermion zero modes can be localized in quiver space, generating mass hierarchy (if the Higgs is near site N).

Gauge Couplings

• The gauge coupling is now given by the sum: $g_{01}^L = \sum_{k=0}^N g |h_{k,0}^L|^2 f_{k,1}$.

 g_{01}^L (red) and g_{01}^R (blue) for N=4.

- Quick IR coupling saturation for a model with few sites.
- ⇒ FCNC are supressed.

Flavor Violation

- We wish to find points in parameter space that have minimal flavor violation, and generate good masses and mixings.
- A scan (genetic algorithm) was made for the quark localizations and Yukawa parameters.
- One such solution is presented below:

 g_{01}^R/g for up type (left) and down type (right) quarks, with N=4.

Flavor Violation

 g_{01}^L/g for quark doublets, with N=4.

For this particular solution, we get:

$$m_u = (172, 1.31, 2.34 \times 10^{-3}) \text{ GeV } m_d = (4.64, 1.08 \times 10^{-1}, 4.08 \times 10^{-3}) \text{ GeV}$$

$$CKM = \begin{pmatrix} 0.975 & 0.220 & 0.004 \\ 0.220 & 0.975 & 0.041 \\ 0.006 & 0.041 & 0.999 \end{pmatrix}$$

Flavor Violation

• Using this solution, we can compute e.g. the contribution to the neutral mesons mass splitting Δm , obtaining:

$$\begin{split} \Delta m_D &\simeq 2.2 \times 10^{-20} \left(\frac{1\,\text{TeV}}{M_{KK}}\right)^2 \text{GeV} \ll 1.57 \times 10^{-14} \text{ GeV} \\ \Delta m_K &\simeq 2.6 \times 10^{-20} \left(\frac{1\,\text{TeV}}{M_{KK}}\right)^2 \text{GeV} \ll 3.48 \times 10^{-15} \text{ GeV} \\ \Delta m_{B_{\text{S}}} &\simeq 6.7 \times 10^{-18} \left(\frac{1\,\text{TeV}}{M_{KK}}\right)^2 \text{GeV} \ll 1.17 \times 10^{-11} \text{ GeV} \end{split}$$

Conclusions

- We obtain a model that solves the hierarchy problems with minimal flavor violation.
- The Higgs doublet can be dynamically localized.
- Phenomenological analysis is still being carried out...

A Toy Model

We take the (electroweak) quiver:

- With only an $SU(2) \times U(1)$ subgroup of SU(3) gauged at the tips, there remains an IR localized SU(2) doublet that can't be eaten, the Higgs.
- This pseudo Nambu-Goldstone boson is naturally light (maybe too light).
- In the continuum limit, this corresponds to Gauge-Higgs unification.