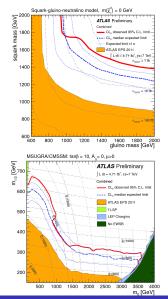
How low can SUSY go?

Jamie Tattersall

In collaboration with H Dreiner and M Krämer. arXiv:1207.1613

How low can SUSY go?

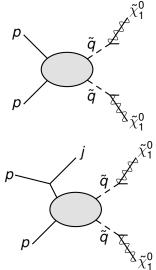

Current Limits

LHC now sets very strict limits on the SUSY parameter space.

- Simplified Model ($m_{\tilde{\chi}_1^0} = 0$).
 - $m_{\tilde{q}}=m_{\tilde{g}}\gtrsim 1.5$ TeV.
 - $m_{ ilde{g}}\gtrsim$ 940 GeV, ($m_{ ilde{q}}=$ 2 TeV).
 - $m_{ ilde q}\gtrsim$ 1380 GeV, ($m_{ ilde g}=$ 2 TeV).
- mSugra (tan $\beta = 10, A_0 = 0, \mu > 0$).

• $m_{\tilde{q}} = m_{\tilde{g}} \gtrsim 1.4$ TeV.

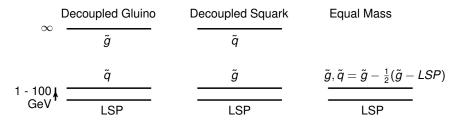
- CMS gives very similar bounds (all a little weaker).
- Everything else has much weaker bounds.
 - \tilde{t} 's, \tilde{b} 's, $\tilde{\ell}$'s, $\tilde{\chi}$'s.


Events containing only MET

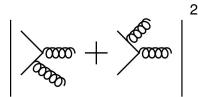
If the spectrum is compressed all momentum is carried by the LSP.

- Hard event is invisible.
- Possibility to use ISR to recoil against LSP.
- Hard ISR jets are common.

Process, $m_{\tilde{q}_i} = 500 \text{ GeV}$	Xsec (fb)
$p_T(j) > 100 \; ext{GeV}$	
$pp ightarrow ilde{q} ilde{q}$	24
ho p ightarrow ilde q ilde q j	6.6
ho ho o ilde q ilde q j j	1.1

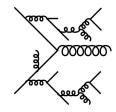

• I will concentrate on this possibility here.

Simplified Models - worst case for LHC


We take simplified models to capture the extremes.

- Squarks degenerate with LSP ($\Delta m = 1 100$ GeV). Gluino heavy.
- Gluino degenerate with LSP ($\Delta m = 1 100$ GeV). Squarks heavy.
- Gluino and squark degenerate with LSP $(\Delta m = 1 100 \text{ GeV}).$
- We ignore third generation.

Matrix Element vs Parton Shower

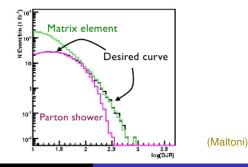

Matrix Element

- Pros:
 - Exact to fixed order.
 - Include interference effects.
- Cons:
 - Perturbation breaks down due to large logs.
 - Computationally expensive.

Valid when partons are hard and well separated.

Parton Shower

- Pros:
 - Resum logs.
 - Produce high multiplicity event.
- Cons:
 - Only an approximation to ME.
 - No interference effects.

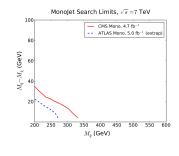

Valid when partons are soft and/or collinear.

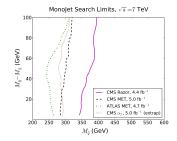
How low can SUSY go?

Matching the matrix element to the parton shower

We must match the Matrix Element prediction to the parton shower.

- Reweight inclusive samples (no double counting).
- Smooth distributions between areas of validity.
- Small dependence on matching scale.
- Small dependence on parton shower.
- Should converge as we include higher multiplicities.




How low can SUSY go?

Results

Squark limit with decoupled gluino.

- $m_{\tilde{q}} \gtrsim$ 340 GeV, significantly lower!
- CMS Razor sets the best limit.
 - Limit does not improve rapidly with splitting.
- Monojet searches are competitive for 'extreme' compression.
 - Extra hadronic activity quickly hurts the monojet searches.
 - Maybe remove 2nd and 3rd Jet vetoes or set these higher.

- Compressing the mass spectrum makes SUSY much harder to look for.
- ISR becomes vital to see any signal.
- Matching the matrix element to the parton shower to required to accurately model the ISR.
- Squark masses \gtrsim 340 GeV.
- Gluino mass \gtrsim 500 GeV.
- Equal squark and gluino masses \gtrsim 650 GeV