Learning how to count - The accidental boost

Sonia El Hedri with Anson Hook, Martin Jankowiak and Jay Wacker

SLAC - Stanford University

June 4, 2012

Sonia El Hedri

Learning how to count - The accidental boost

June 4, 2012 1 / 10

Natural SUSY high multiplicity signatures

• Relatively soft jets ($p_T \gtrsim 50$ GeV)

Natural SUSY high multiplicity signatures

- Relatively soft jets ($p_T\gtrsim 50~{
 m GeV}$)
- $\not E_T$ suppressed

Natural SUSY high multiplicity signatures

- Relatively soft jets ($p_T\gtrsim 50~{
 m GeV}$)
- $\bullet \ge$ 12 jets (up to 18 with RPV)

Sonia El Hedri

Learning how to count - The accidental boost

Cluster jets into fat jets ($R \sim 1$)

• Cut on N_{fatjets}

Cluster jets into fat jets ($R \sim 1$)

- Cut on N_{fatjets}
- Cut on $\not E_T$

Cluster jets into fat jets $(R \sim 1)$

- Cut on N_{fatjets}
- Cut on $\not E_T$
- Cut on $M_J = \sum_j m_j$

Cluster jets into fat jets $(R \sim 1)$

- Cut on N_{fatjets}
- Cut on $\not E_T$
- Cut on $M_J = \sum_j m_j$

No more discriminating variables?

Knowing how to count

- Recursively, using clustering algorithms
- Using N-subjettiness

Uncluster j into j_1 and j_2 (j_1 harder) If $m_j \leq m_{cut}$ or $\Delta R(j_1, j_2) < R_{min}$, j is a subjet If $p_{T2} < y_{cut} \cdot p_{Tj}$, throw out j_2

Repeat the procedure on the remaining jet(s)

$$m_{cut} = 30$$
 GeV, $y_{cut} = 0.15$, $p_{Tcut} = 40$ GeV, $R_{min} = 0.20$

Using N-subjettiness

$$\tau_N = \sum_i \frac{p_{Ti}}{p_T} \min_{k=1\dots N} \frac{\Delta R_{ik}}{R_0}$$

Using N-subjettiness

Sonia El Hedri

Learning how to count - The accidental boost

N-subjettiness - Boosted Decision Trees

Ν	τ_1	τ_{21}	τ_{31}	τ_{41}
1	<13%			
2	13% - 25%			
2	>25%	<40%		
3	25% - 45%	>40%	<35%	
3	>45%	>40%	<35%	<20%
4	>45%	>40%	<35%	>20%
4	25% - 40%	>40%	>35%	<40%
4	25% - 50%	>40%	35%-45%	<40%
5	>25%	>40%	>35%	>40%
5	25% - 50%	>40%	>45%	<40%
5	>50%	>40%	35%-45%	>40%

Sonia El Hedri

Learning how to count - The accidental boost

June 4, 2012 9 / 10

- Natural SUSY scenarios favor the existence of very high multiplicity events with relatively soft jets and suppressed missing E_T
- Such events can be clustered into fat jets and studied using jet substructure techniques
- Algorithmic techniques and jet shape variables such as N-subjettiness allow to estimate the total number of subjets in an event
- Adding a cut on this number of subjets to the standard $M_J + E_T$ cuts allow an improvement of the exclusion limits by at least a factor of two.