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Natural SUSY high multiplicity signatures
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The Classic Signature

12+ JetsRelatively soft jets (pT & 50 GeV)

6 ET suppressed

≥ 12 jets (up to 18 with RPV)
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The accidental boost

Seem to have lost 
the single feature that made

these events special

13 Jet Event 3 Jet Event
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The accidental boost

Cluster jets into fat jets (R ∼ 1)

Seem to have lost 
the single feature that made

these events special

13 Jet Event 3 Jet Event

Cut on Nfatjets

Cut on 6 ET

Cut on MJ =
∑

j mj

No more discriminating variables?
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Knowing how to count

The difference between them is clear

Each jet mass is approximately independent for QCD

Small Jet MassLarge Jet Mass

Getting multiple massive jets rare

Jet mass correlations never studied before 
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Recursively, using clustering algorithms

Using N-subjettiness
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Counting subjets recursively

Uncluster j into j1 and j2 (j1 harder)

If mj ≤ mcut or ∆R(j1, j2) < Rmin, j is a subjet

If pT2 < ycut .pTj , throw out j2

Repeat the procedure on the remaining jet(s)

mcut = 30 GeV, ycut = 0.15, pTcut = 40 GeV, Rmin = 0.20
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Using N-subjettiness
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N-subjettiness - Boosted Decision Trees
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Results
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Conclusion

Natural SUSY scenarios favor the existence of very high multiplicity
events with relatively soft jets and suppressed missing ET

Such events can be clustered into fat jets and studied using jet
substructure techniques

Algorithmic techniques and jet shape variables such as N-subjettiness
allow to estimate the total number of subjets in an event

Adding a cut on this number of subjets to the standard MJ+ 6 ET

cuts allow an improvement of the exclusion limits by at least a factor
of two.

Sonia El Hedri Learning how to count - The accidental boost June 4, 2012 10 / 10


