Learning how to count - The accidental boost

Sonia El Hedri
with Anson Hook, Martin Jankowiak and Jay Wacker
SLAC - Stanford University
June 4, 2012

Natural SUSY high multiplicity signatures

- Relatively soft jets ($p_{T} \gtrsim 50 \mathrm{GeV}$)

Natural SUSY high multiplicity signatures

- Relatively soft jets ($p_{T} \gtrsim 50 \mathrm{GeV}$)
- E_{T} suppressed

Natural SUSY high multiplicity signatures

- Relatively soft jets ($p_{T} \gtrsim 50 \mathrm{GeV}$)
- E_{T} suppressed
- ≥ 12 jets (up to 18 with RPV)

The accidental boost

The accidental boost

The accidental boost

Cluster jets into fat jets ($R \sim 1$)

- Cut on $N_{\text {fatjets }}$

The accidental boost

Cluster jets into fat jets ($R \sim 1$)

- Cut on $N_{\text {fatjets }}$
- Cut on E_{T}

The accidental boost

Cluster jets into fat jets ($R \sim 1$)

- Cut on $N_{\text {fatjets }}$
- Cut on E_{T}
- Cut on $M_{J}=\sum_{j} m_{j}$

The accidental boost

Cluster jets into fat jets ($R \sim 1$)

- Cut on $N_{\text {fatjets }}$
- Cut on E_{T}
- Cut on $M_{J}=\sum_{j} m_{j}$

No more discriminating variables?

Knowing how to count

- Recursively, using clustering algorithms
- Using N-subjettiness

Counting subjets recursively

Uncluster j into j_{1} and j_{2} (j_{1} harder)
If $m_{j} \leq m_{\text {cut }}$ or $\Delta R\left(j_{1}, j_{2}\right)<R_{\text {min }}, j$ is a subjet
If $p_{T 2}<y_{\text {cut }} . p_{T j}$, throw out j_{2}
Repeat the procedure on the remaining jet(s)

$$
m_{\text {cut }}=30 \mathrm{GeV}, y_{\text {cut }}=0.15, p_{\text {Tcut }}=40 \mathrm{GeV}, R_{\min }=0.20
$$

Using N-subjettiness

$$
\tau_{N}=\sum_{i} \frac{p_{T i}}{p_{T}} \min _{k=1 \ldots N} \frac{\Delta R_{i k}}{R_{0}}
$$

Using N-subjettiness

$$
\tau_{N}=\sum_{i} \frac{p_{T i}}{p_{T}} \min _{k=1 \ldots N} \frac{\Delta R_{i k}}{R_{0}}
$$

N-subjettiness - Boosted Decision Trees

N	τ_{1}	$\tau 21$	$\tau 31$	τ_{41}
1	$<13 \%$			
2	$13 \%-25 \%$			
2	$>25 \%$	$<40 \%$		
3	$25 \%-45 \%$	$>40 \%$	$<35 \%$	
3	$>45 \%$	$>40 \%$	$<35 \%$	$<20 \%$
4	$>45 \%$	$>40 \%$	$<35 \%$	$>20 \%$
4	$25 \%-40 \%$	$>40 \%$	$>35 \%$	$<40 \%$
4	$25 \%-50 \%$	$>40 \%$	$35 \%-45 \%$	$<40 \%$
5	$>25 \%$	$>40 \%$	$>35 \%$	$>40 \%$
5	$25 \%-50 \%$	$>40 \%$	$>45 \%$	$<40 \%$
5	$>50 \%$	$>40 \%$	$35 \%-45 \%$	$>40 \%$

Results

$$
\tilde{g} \tilde{g} \rightarrow t \bar{t} t \bar{t}+2 \chi
$$

Non RPV

RPV

Conclusion

- Natural SUSY scenarios favor the existence of very high multiplicity events with relatively soft jets and suppressed missing E_{T}
- Such events can be clustered into fat jets and studied using jet substructure techniques
- Algorithmic techniques and jet shape variables such as N -subjettiness allow to estimate the total number of subjets in an event
- Adding a cut on this number of subjets to the standard $M_{J}+E_{T}$ cuts allow an improvement of the exclusion limits by at least a factor of two.

