#### Micron-scale gas detectors

Simulations

#### Heed – Magboltz – Maxwell – Garfield

Heed simulates ionisation patterns produced by charged particles and photons in a gas.

Magboltz computes electron transport tables for nearly arbitrary gas mixtures: drift velocity vectors, diffusion tensors, Townsend and attachment coefficients.

Maxwell is a finite element field calculation program.

Garfield uses the above to trace electrons and ions in gas-based detectors, computing signals.

## History

- These programs were developed for the simulation of centimeter-scale gas-based detectors with a spatial resolution of ~100 μm.
- They have been used with success for the simulation of TPCs, drift tubes, CSCs ...
- Since a couple of years, they are also used for smaller scale detectors – generally with less success.
- This talk discusses the background to the problems that are encountered.

#### Simulation issues

Field calculations with finite element programs.

- Some small-scale detectors (e.g. GEMs) contain exposed dielectrics. Charge can accumulate on these leading to dynamic effects.
- Transport, and thus diffusion and gain, of electrons at small scales and in inhomogeneous fields.

Gain calculations in Penning mixtures.

#### Issues with field calculations

- Analytic fields are known for many 2D configurations.
  But the devices discussed in this meeting are 3D, frequently containing dielectric materials. Analytic solutions for these devices are very rare.
- A popular way out is to use the finite element method:
  - almost any geometry;
  - dielectrics;
  - commercial software;
  - graphical user interfaces ...



## The price to pay for finite elements

- Finite element programs focus on the wrong thing: they solve the potential V, but we do not really need it:
  - quadratic shape functions do a fair job at approximating  $V \approx \log(r)$  potentials;
  - potentials are continuous.
- *E* is what we use, but:
  - Solution gradients of quadratic shape functions are linear and not suitable to approximate our  $E \approx 1/r$  fields with, left alone  $E \approx 1/r^2$  fields;
  - electric fields are discontinuous;
  - ~50 % accuracy in high-field areas is common.

#### Food for thought ...

- The Finite Element Method is a very useful tool which can make a good engineer better, but it can make a bad engineer dangerous. [Robert D. Cook, Professor of Mechanical Engineering University of Wisconsin, Madison]
- One should wonder what the Finite Element Method cam do in the hands of a physicist !

#### Field calculations – way out

- Currently, a plausible way out seems to be the use of the integral equation or boundary element method.
- These methods place charges outside the problem domain and integrate the field using correct 3D expressions: no discontinuities, good approximation of small scale structures.
- But ... such programs are not widely available. One option would be to use a program produced recently by a group in India (Supratik Mukhopadhyay et al.).

#### Dynamic effects

- One detailed study of dynamic effects that I am aware of was done by Vitali Tikhonov (2002).
- He used an iterative approach:
  - finite element calculation of the GEM field;
  - tracking of electrons to determine surface charges;
  - surface charges added to the finite element model;
  - iteration until convergence achieved.
- Difficulties:
  - surface conductivity not well established;
  - all problems of the finite element approach;
  - laborious.

#### Issues with transport

- In e.g. argon-based gas mixtures, the mean free path is a few microns – i.e. comparable to the size of elements of the detector.
- Since the field may well vary on the scale of microns, the traditional statistical approach reaches the limits of its applicability.
- Instead, a Magboltz-like stepping algorithm with inhomogeneous field needs to be developed.

Amadeo Avogadro (1776-1856)

## Distances in gases

Number of Ar atoms in a cm<sup>3</sup>:

- Avogadro's number:
- Atomic weight of Ar:
- Density of Ar:
- Loschmidt's number:

6.022  $10^{23}$  atoms/mole ÷ 40 g/mole × 1.782  $10^{-3}$  g/cm<sup>3</sup> =  $\mathscr{L} = 2.7 \ 10^{19}$  atoms/cm<sup>3</sup>

Distance between neighbouring Ar atoms:  $\frac{4}{3}\pi r^3 \times 2.710^{19} = 1:$   $d \approx 5 \text{ nm}$ 



Josef Loschmidt (1821-1895)



#### Cross section of argon

#### Cross section in a hard-sphere model:

- Radius: 70 pm (http://www.webelements.com)
- Surface:  $\sigma = \pi (70 \, 10^{-10} \, \text{cm})^2 \approx 1.5 \, 10^{-16} \, \text{cm}^2$

Measured cross sections, as used by Magboltz:



#### Mean free path in argon

- Mean free path for an electron ?
  - An electron hits all atoms of which the centre is less than a cross section radius from its path.
  - **•** Over a distance *L*, the electron hits  $\mathcal{L}\sigma L$  atoms.
  - ► Hence, the mean free path is  $\lambda_e = 1/(\mathscr{L}\sigma) \approx 2 \ \mu m$ .
  - Much larger than the distance between atoms, 5 nm !

#### Scale $\gg$ mean free path (> 1 mm)

- For practical purposes, electrons from a given starting point reach the same electrode – but with a spread in time and gain.
- Electrons transport is treated by:
  - integrating the equation of motion, using the Runge, Kutta, Fehlberg method, to obtain the path;
  - integrating the diffusion and Townsend coefficients to obtain spread and gain.
- This approach is adequate for TPCs, drift tubes etc.

#### Analytic integration

#### Example: a TPC read-out cell



#### Scale > mean free path (100 $\mu$ m - 1 mm)

- Electrons from a single starting point may end up on any of several electrodes.
- Calculations use Monte Carlo techniques, based on the mean drift velocity and the diffusion tensor computed by microscopic integration of the equation of motion in a constant field. Gain depends on the path.
- This approach is adequate as long as the drift field is locally constant – a reasonably valid assumption in a Micromegas but less so in a GEM.

# Analytic vs Monte Carlo

 Analytic integration
 Runge-Kutta-Fehlberg technique;
 automatically adjusted step size;
 optional integration of diffusion, multiplication and losses.

 Monte Carlo integration
 non-Gaussian in accelerating, divergent and convergent fields;
 step size to be set by user.

[Figures made by Gilles Barouch, CEA]



#### Diffusion

Diffusion is not necessarily a Gaussian process, as illustrated here for a radial flow at constant mobility:  $\dot{x} = \mu E_{x}, \dot{y} = \mu E_{y}$ Virtually harmless for converging flow, e.g. on approach of anode wires. Makes Gaussian formulae inadequate for diverging flow as found in GEMs.



#### [In collaboration with Gabriele Croci]

#### Scale ~ mean free path (1-100 $\mu$ m)

- Field variations during the free flight between collisions, affect the path – which may therefore no longer be parabolic.
- The only viable approach here seems to be a complete microscopic simulation of the transport processes, taking local field variations into account.
- This method, still to be written, should be based on the Magboltz program.

#### Issues regarding the gain

- Townsend coefficients as such are computed with fair accuracy by Magboltz.
- But in several gas mixtures, the gain is (grossly) underestimated if one integrates the Townsend coefficient as computed by Magboltz.
- The discrepancy is often due to the Penning effect: excited states of gas A ionise molecules of gas B. Excitation rates nearly always exceed ionisation rates and the effect, when allowed, has a major impact.

# Gain in Ar $-iC_4H_{10}$ (1-5%)



[Plot: David Attié, CEA Saclay]

#### Details of the Magboltz output

Example: 5 %  $iC_4H_{10}$  at E = 60 kV/cm Isobutane: Argon: Excitations: Excitations: 11.55 eV (S): 12 GHz ▶ 7.4 eV: 19 GHz 13.0 eV (P): 12 GHz ▶ 9.7 eV: 5 GHz 14.0 eV (D): 4 GHz ▶ 17.0 eV: 0.4 GHz Ionisation: Ionisation: 12 GHz > 10.67 eV: 9 GHz > 15.7 eV: ▶ If all excited Ar atoms ionise  $iC_4H_{10}$ , the ionisation rate

goes from 21 GHz to 49 GHz, more than doubling the Townsend coefficient.

#### Penning transfer rate

| Comparing at 6 | 0 kV/cm:     |             |
|----------------|--------------|-------------|
| Measured:      | gain ~ 1800, | α ~ 1500/cm |
| Calculated:    | gain ~ 300,  | α ~ 1140/cm |
| (Magboltz:     |              | α ~ 1150/cm |

This translates to a 25 % Penning transfer rate, in line with commonly quoted figures for such mixtures.

At present, there are few solid theoretical predictions of the Penning transfer rate. Ar-CH<sub>4</sub>



Only the, relatively infrequent, argon-D excitation can lead to a Penning effect.

## Gain in Ar – CH<sub>4</sub> (6-10%)



[Plot: David Attié, CEA Saclay]

#### Penning transfers in the Alice TPC

In 90 % Ne + 10 % CO<sub>2</sub>, apparently 40 % of the Ne<sup>\*</sup> ionise CO<sub>2</sub>, enhancing the gain by a factor 2-5 !



### Gain – approach

Magboltz produces tables of excitation rates as part of its output.

Pending theoretical estimates of the Penning transfer rates, the transfer rate will have to be obtained from measurements.

### Conclusion

- It is reasonably clear how the current difficulties with simulations should be addressed.
- Work in some areas, e.g. transport at the 100 µm scale and simplification of the use of Penning transfers rates, is in progress.
- ► In other domains, e.g. transport at the 10 µm scale and boundary element methods, needs to be started.

Backup slides

#### Penning effect at 80 kV/cm

- Example: 5 %  $iC_4H_{10}$  at E = 80 kV/cm
- isobutane:
  - Excitations:
    - ▶ 7.4 eV: 22 GHz
    - ▶ 9.7 eV: 7 GHz
    - ▶ 17.0 eV: 0.9 GHz
  - Ionisation:
    - 10.67 eV: 14 GHz

- argon:
  - Excitations:
    - 11.55 eV (S): 17 GHz
    - 13.0 eV (P): 21 GHz
    - 14.0 eV (D): 7 GHz
  - Ionisation:
    - 15.7 eV: 26 GHz
- ► If all excited Ar atoms ionise  $iC_4H_{10}$ , the ionisation rate goes from 40 GHz to 85 GHz, more than doubling the Townsend coefficient !