

Current Trends in the Micro-Pattern Gas Detectors Maxim Titov, CEA SACLAY, DAPNIA, France

OUTLINE / R & D ACTIVITIES:

Development of Radiation Hard Technologies
State-of-the-art of MPGD (GEM, Micromegas)
Technological Aspects of the MPGD Development
Detectors and Electronics Integration
Software Tools Development for MPGD
Advances in Hole-Type Multipliers

7. MPGD Industrial Applications

Micro-Pattern Gas Detectors, Towards R & D Collaboration CERN, Geneva, September 10-11, 2007 I. Development of Radiation Hard Technologies (Aging, Choice of Contruction Materials, Outgassing, Discharges, Charging-up Effects)

RD10 (1992-1993)

A STUDY TO IMPROVE THE RADIATION HARDNESS OF GASEOUS DETECTORS FOR USE AT VERY HIGH LUMINOSITIES

M. Capeáns, C. Garabatos, R.D. Heuer, R. Mackenzie, T.C. Meyer, and F. Sauli (CERN, Geneva)

> T. Mashimo (ICEPP, Tokyo)

G. Pfister and M. Simona (Institut Cantonal d'Ecotoxicologie, Geneva)

M. Fraga, M. Salete Leite, E. de Lima, R. Marques, A. Policarpo and K. Silander

(LIP, Coimbra)

(RD10 & RD28 & new LHC developments has a greatest impact on our understanding of radiation hardness in all types of gas detectors)

Aging and radiation hardness of gas detectors \rightarrow See M. Capeans talk

RD28 (1993-1996)

DEVELOPMENT OF MICROSTRIP GAS CHAMBERS FOR RADIATION DETECTION AND TRACKING AT HIGH RATES FINAL STATUS REPORT

Presented by F Sauli at the LHCC open meeting, March 13, 1996

CERN, Geneva, Switzerland BINP, Budker Institute of Nuclear Physics, Novosibirsk, Russia CRN-Strasboug, Centre de Recherches Nucléaires, Univ. Luis Pasteur, Strasbourg, France CRPP-Carleton, Carleton University, Ottawa, Canada **DAPNIA-Saclay, Centre d'Etudes Nucléaires, Saclay, France** DF-INFN-Torino, Dip di Fisica and INFN, Torino, Italy FERMILAB, Batavia, USA FPNT-Cracow, Fac. of Phys and Nucl Techn., Univ. of Mining and Metallurgy, Cracow, Poland HEP-Santiago, Univ of Santiago de Compostela, Spain IIHE-Bruxelles, Inter-Univ Inst. for High Energy Physics, ULB-VUB, Bruxelles, Belgium NRCPS-Demokritos, Inst. of Nucl Phys. and Inst. of Micro Electronics, Attiki, Greece IP-Prague, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic **IP-Comenius, Institute of Physics, Comenius University, Bratislava, Slovakia** IP-Kosice, Inst. of Physics of the Slovak Academy of Sciences, Kosice, Slovakia IPN-Lyon, Institut de Physique Nucléaire, Lyon, France ISA-Aarhus, Institute for Synchrotron Radiation, Aarhus, Danemark ITEP-Moscow, Institute for Theoretical and Experimental Physics, Moscow, Russia JINR, Dubna, Russia LIP-Coinbra, Lab. de Instrumentação e Fisica Experim de Particulas, Univ. Coinbra, Portugal LN-INFN-Frascati, Laboratori Nazionali INFN, Frascati, Italy LN-INFN-Legnaro, Laboratori Nazionali INFN, Legnaro, Italy LN-INFN-Gran Sasso, Laboratori Nazionali, Gran Sasso, Italy LPI-Moscow, Lebedev Physical Institute, Moscow, Russia LPPE-Mons, Laboratoire de Physique des Particules Elementaires, Mons, Belgique MPI-Heidelberg, Max-Planck Inst. für Kernphysik, Heidelberg, Germany NIKHEF, Amsterdam, The Netherlands NPI-Moscow, Nucl. Physics Institute, Moscow State University, Moscow, Russia PD-Carleton, Physics Dept., Carleton University, Ottawa, Canada PD-Michigan, Physics Dept., University of Michigan, Ann Arbor, USA CM-P00047758 PD-Northwestern, Physics Dept. Northwestern University, Evanston, USA PD-Birmingham, Physics Dept., Birmingham University, Birmingham, UK PD-Liverpool, Physics Dept., Liverpool University, Liverpool, UK PD-Manchester, Physics Dept., Manchester University, Manchester, UK PHASE, CRN, Univ Luis Pasteur, Strasbourg, France RAL, Rutherford Appleton Laboratory, Chilton, Didcot, UK SUNY, Stony Brook, USA TA&M-PD, Physics Dept, Texas A&M University, College Station, USA **TRIUMF**, Vancouver, Canada UC-London, University College, London, UK WIS, Weizmann Institute of Sciences, Rehovot, Israel

Micro-Strip Gas Chamber (MSGC)

RATE CAPABILITY > 10⁶/mm²s;SPACE ACCURACY ~ 40 μm;2-TRACK RESOLUTION ~ 400 μm

Many detector issues to be addressed for the SLHC and ILC → Need for a common R & D efforts

MICROMEsh GAseous Structure (Micromegas)

Y. Giomataris,

Latest Developments with Micromegas and R&D \rightarrow see I. Giomataris, D. Attie talks

Micromegas and GEM in Current/Future HEP Experiments

COMPASS

NA48 / KABES

CAST (CERN Axial Solar Telescope)

nTOF (neutron beam profiles)

Laser MegaJoule

DEMIN (inertial confinement fusion)

Picollo (in-core neutron measurement)

T2K Time Projection Chamber

Linear Collider TPC (?)

ATLAS Muon System Upgrade (?)

COMPASS

LHCb Muon Detector

TOTEM Telescope

HBD (Hadron Blind Detector)

Cascade neutron detection

NA49 - upgrade

X-Ray Polarimeter (XEUS)

GEM TPC for LEGs, BoNuS

Linear Collider TPC (?

KLOE2 vertex detector (?)

43

Future GEM developments for COMPASS and PANDA experiments → see B. Ketzer talk

Triple-GEM for Triggering in the LHCb Muon System

12 Triple GEM Detectors in the innermost region of M1: (rates up to 0.5 MHz/cm²)

Triple GEM (~ 20 * 25 cm²) with $Ar/CF_4/CO_2$ (45:40:15):

<u>Time resolution: RMS ~ 4.5 ns</u> M. Alfonsi. IEEE TNS-51(5) (2004) 2135

GEM Activities at INFN (GEM @ LHCb, Cylindrical GEM @ KLOE → see M. Alfonsi talk

Time Projection Chamber for International Linear Collider

Freedom in readout structures

Idea (1976): proposal for PEP4 at LBL Proven technology: DELPHI, ALEPH (LEP), Ceres, NA49, STAR (heavy-ion experiments) Future experiments: ALICE (LHC), T2K, ILC

h			
	STAR	ALICE	ILC
Inner radius (cm)	50	85	32
Outer radius (cm)	200	250	170
Length (cm)	2 * 210	2 * 250	2 * 250
Charge collection	wire	wire	MPGD
Pad size (mm)	2.8 * 11.5	4 * 7.5	2*6
	6.2 * 19.5	6*10(15)	
Total # pads	140000	560000	1200000
Magnetic field [T]	0.5	0.5	4
Gas Mixture	Ar/CH4	Ne/CO2	Ar/CH4/CO2
	(90:10)	(90:10)	(93:5:2)
Drift Field [V/cm]	135	400	230
Total drift time (μ s)	38	88	50
Diffusion $\sigma_T(\mu m/\sqrt{cm})$	230	220	70
Diffusion $\sigma_L(\mu m/\sqrt{cm})$	360	220	300
Resolution in $r\phi(\mu m)$	500-2000	300-2000	70-150
Resolution in $r z (\mu m)$	1000-3000	600-2000	500-800
dE/dx resolution [%]	7	7	< 5
Tracking efficiency[%]	80	95	98

The LCTPC collaboration: key aspects of activity → see K. Dehmelt talk

Ongoing R&D for the MPGD ILC-TPC MPDG TPC HAS DEMONSTRATED ITS POTENTIAL TO ACHIEVE $\sigma \sim 100 \ \mu m$ **Triple GEM:** → Micromegas: **Single Point Resolution** (with resistive anode readout) Lesolution [mm] 0.5 0.4 0.3 gas: Ar-CH_-CO_2 : 93-5-2, pads: 2.2 \times 6.2 mm^2 0.2 0.5 mm determined by Global Fit, σ free 0.18 0.18 staggered non staggered 0.4 -0-1T Ar CF4 Iso (95:3:2) 0.14 - 2 T Transverse diffusion B = 5T 0.12 0.1 Readout geometry 0.2 0.08 0.06 0.1 Defocussing (3-GEM) 0.04 0.02 200 300 400 500 600 drift length [mm] 6 8 10 12 14 z/cm **AT B=4 T SPATIAL RESOLUTION IS** THE NARROW SIGNAL SPREAD **DOMINATED BY READOUT** (PRF ~ 10 μm) REQUIRES SIGNAL STRUCTURE (2 * 6 mm² PADS) **BROADENING FOR O(1 mm) PADS** (P. Colas et al, arXiv: physics/0703243) M. Janssen, 2006 IEEE NSS/MIC Conference Record Single and two-track resolution (in presence of beam bkg) **R & D** \rightarrow gas mixture & ion feedback optimization Endplate design for minimal material **Activities:**

→ detector & electronics integration

MPDG-TPC Performance & Charge dispersive readout \rightarrow see P. Colas, A. Bellerive talks

III. Technological Aspects of the MPGD Development (industrialization and manufacture of large size detectors, quality control, assembly and system aspects)

"BULK" MICROMEGAS @HARP ENDPLATE:

2 GEM GLUED TOGETHER @ CERN:

Talks at workshop → R. de Oliveira, A. Delbart, S. Pinto, K. Kurvinen, N. Smirnov

New Fabrication Technology "Bulk" Micromegas

Large area/robustness, industrial process Low material detectors no separate assembly of PCB & Micromesh grid

- 1) PCB
- 2) Photoresistive film lamination (50 150 μ m)
- 3) Mesh lamination (ϕ 19 μ m 500 LPI)
- 4) Photoresistive film lamination (50 150 μm)
- 5) UV exposure through mask
- 6) Development (chemical solution)

T2K Micromegas / TPC:

~ 10 m² TPC endplate will be equipped in 2009 with 72 Bulk Micromegas (34 * 36 cm²)

J. Bouchez, NIMA574(2007) 425

BULK MICROMEGAS → see A. Delbart talk

 R&D for ATLAS Muon Upgrade: (trigger & tracking in single chamber)
Replace muon chambers in regions with highest counting rates (few kHz/cm² @ L=10³⁵cm⁻² s⁻¹, mostly from neutrons and γ's)

Need large-size detectors (1 * 2 m) → See J. Wotschak talk

P. Colas, NIMA535 (2004) 506 A. Bamberger, NIMA573(2007) 361

Novel ASIC R&D Developments for the MPGD (... not limited to CMOS readout ...)

→ see W. Riegler, L. Musa, P. Baron, W. Snoyes,
N. Malakhov, G. Felici, J. Pouthas, T. Tanimori talks

Pixel Readout for Gaseous Detectors

Gas Detector Readout by multi-pixel CMOS array (used as charge collecting anode)

EXPERIMENTAL OPPORTUNITIES:`

1) Reconstruction of photoelectrons from X-Ray (2-10 keV) conversions

2) High-Rate Particle Tracking → no ambiguity with multi-track & multi-hit events

Time Projection Chamber (TPC, μ TPC) \rightarrow precision 3-D track reconstruction

3) Single Photon Detection

 4) Advanced Compton Telescope & Low energy nuclear recoil reconstruction in WIMP or neutrino interactions
→ both direction and dynamics of photoelectron or nuclear recoil can be accurately tracked

Single Photon Detection @ GEM + VLSI pixel ASIC

"SELF- PORTRAIT" OF GEM AMPLIFICATION STRUCTURE

X -

• UV photo-detector (semi-transparatent CsI + GEM) Single photoelectrons entering GEM hole • GEM foil & CMOS chip pitch (50 μm)

Intrinsic resolution of the read-out system (S/N and systematics):

Center of "gravity" of single electron avalanche $\sigma \sim 4 \,\mu m$

Resolution is not degraded by avalanche spread in the GEM amplification system

R. Bellazzini et al, arXiv: physics/0703176

InGrid: NIKHEF-Saclay-CERN-Twente Collaboration

InGrid: integrate Micromegas & Timepix by Si-wafer post-processing technology • Grid robustness & Gap/Hole accuracy

Micromegas and Timepix / MEDIPIX2

Resolution: $\sigma_t^2 = \sigma_0^2 + D_t^2$. Z with σ_0 - resolution at "0" drift length & D_t diffusion coefficient

Cosmic ray track:

Timepix + Ingrid + 20 µm thick ASi layer on top of pixel matrix (SiProt) → attenuate discharge current

Triple-GEM and Timepix / MEDIPIX2

Pixel Readout of Gas Detectors: Future Perspectives

RELAXD project (Dutch/Belgian): NIKHEF, panalytical, IMEC, Canberra

DETECTOR and ELECTRONICS INTEGRATION FOR MILLIONS CHANNELS:

- Truly 2D / 3D image (high rate capability)
- 2D high density readout plane (~50 μm)
- No long signal routine lines (low noise)

FUTURE DEVELOPMENTS

Avoid bonding wires → 'Through Si-vias' integrated multi-layer pixel chip with `through-wafer vias' connections: perpendicular holes through all Si

Wafer post-processing → possibility of signal re-routing (when pixel detectors & readout cells do not match

Avoid `dead surface area' between two pixel chips or in a single pixel chip area, used for in-vias I/O electrical connections

E. Heijne, NIMA541 (2005) 274 K. Takahashi et al, Microelectron Rel. 43 (2003) 1267

V. Software Tools Development for the MPGD

Many tools developed to simulate gaseous detector configurations

Maxwell (Ansoft) Electrical field maps in 2D & 3D <u>Magboltz (S. Biagi)</u> Electron transport properties, drift Diffusion, multiplication, attachment

HEED (I. Smirnov) Energy loss, ionization

Garfield (R. Veenhof) Electrical field maps in 2D & 3D fields, drift properties

Software tools → See R. Veenhof and J. Apostolakis talks

SIMULATION STUDIES FOR PIXEL READOUT OF ILC TPC: (http://hausch.home.cern.ch/hausch/MediPix.html)

VI. Advances in Hole-Type Multipliers (THGEM, RETGEM, MCP) for Photon Detection

Thick-GEM (THGEM)

(see M. Cortesi, V. Peskov. R. Bellazzini talks)

One of exciting applications of GEM / Micromegas with CMOS multi-pixel readout could be position sensitive single photon detection

Thick GEM with Resistive Electrodes

Spark-protected Resistive Electrode Thick GEM (RETGEM) manufactured by a screen - printing technology

Screen printing is widely used in microelectronics to produce patterns of different shape and resistivity. Therefore, RETGEM technology produced with screen printing techniques offers a convenient and widely available alternative to RETGEMs made of Kapton.

Photo of a new RETGEM

A magnified photo of holes

Gas gain characteristics

Advantages of the screen printing technology:

Offers cost-effectiveness, convenience, and easy optimization RETGEMs resistivity and geometry. Large area RETGEMs can be produced by this technology.

(Advances in RETGEM \rightarrow see V. Peskov talk)

B. Clark et al, physics/0708.2344

VII. MPGD Industrial Applications (Dose Imaging in Radiotherapy, Portal Imaging Devices)

A real collaboration between research and industrial world will be crucial for future MPGD developments

A Scintillating GEM for Dose Imaging in Radiotherapy

Scintillation light (optical) & charge Readout:

Light output for 138 MeV protons:

Electronic Portal Imaging Detectors (EPID)

<u>EPID (GEM + γ-Ray Converter)</u>: Cancer treatment pulsed γ-beam Diagnostic X-ray image of tumor

Allow to combine X-ray and γ -ray detector in one device 10⁵-10⁶ Hz/mm² (< 60 keV X-rays); 10⁸- 10⁹ Hz/mm² (< 50 MeV γ -Rays)

ELECTRONICS OUTSIDE THE BEAM \rightarrow RADIATION TOLERANT DEVICE

X-Ray (30 keV): Lamb chop (thickness 15 mm)

plan from R&D to commissioning (wide use of industrial methods)

performance, even in large systems \rightarrow with control of systematics