

Pixel readout of MPGD

Some recent results at NIKHEF 11 September 2007

Jan Timmermans

Overview

- Pixel readout of gaseous detectors using Micromegas-like structures
- Adding functionalities to pixel readout chips by wafer post-processing
 - Gas gain grids: Ingrid
 - Discharge protection: Siprot
- The Timepix chamber, a 65k channel µTPC
- Gossip (thin gaseous detector) and Gossip ageing results

Processing InGrids (MESA+, Univ. Twente)

- Substrate can be:
 - Si wafer with a patterned anode
 - Pixel readout chip
- Photo-resist coating & exposure
 - Define the amplification gap (tens of µm)
 - Define the supports (pillars/walls)
- Metal film deposition & patterning
 - Define the grid geometry
- Dissolve the un-exposed resist
 - + some cleaning

New InGrid developments and results

Max Chefdeville (NIKHEF/Saclay) + Twente Univ.

- Process improvement: grids much flatter
 - Extremely good energy resolution:
 13.6 % FWHM with ⁵⁵Fe in P10
 - Removal of K_β 6.5 keV line:
 11.7 % @ 5.9 keV in P10
 - With F=0.17 and Ne = 229 gain fluctuation ~ 0.5
- New wafer masks: hole pitches down to 20 µm with various diameters and gaps
 - Investigate Micromegas geometry
 - Test of the ion backflow theory feasible
- Until now: 1 µm thin Al but can now be increased to 5 µm by electrolysis
 Expect less damaged from sparks

InGrid ion backflow measurements @ NIKHEF

- Measurements started in Saclay
- Main issues encountered:
 - Gas gap between detector window & cathode -
 - "Parasitic" field Unwanted contribution to primary current
 - Small grid area
 - high X flux for significant primary current (recombination problem @ low drift field)
 - bad collection of "long" range photoe-
- Solutions:
 - Operate the detector with cathode at ground
 - Reduce X-ray energy (~ 9 keV) and flux
- Now:
 - measurement of the primary and backflow current accurate to the pA!
 - Good measurement up to field ratio of 1000: backflow fraction few 10⁻³ in P10 gas.

NIKHEF setup (on 24 Aug. 2007)

Status Timepix usage at NIKHEF

•1st Timepix (with 3 μ m Siprot) "under HV" Dec-Jan for 40 days He/isoButane 80/20; then died after ONE day with Ar/isoButane

•Timepix C08-W0014 (also 3 µm Siprot) was "under HV" since 24 April (for 3 months!) with He/isoButane 80/20 ("old")

•Timepix E09-W0014 (with 20 μ m Siprot + Ingrid) under HV for >one month with He/isoB (detector Next-1)

•Detector Next-2: Timepix + 20 µm Siprot + Micromegas; just started on Ar/isoB.

•Next-3: Medipix2.1 + 30 µm Siprot + Ingrid: gain 200k reached

A "scratch" occurred during production Ingrid; Loose parts removed. Ingrid working!

1
1

Timepix pixel

Timepix + Micromegas: Moiré effects

Irradiation: ⁹⁰Sr

Timepix + Siprot + Ingrid

"uniform"

9

A "long" cosmics track (picture is 14x14 mm²; 256x256 pixels)

Residuals and drift length

- Standard deviation of residuals follows $\sigma_t^2 = \sigma_0^2 + D_t^2$. z with σ_0 spatial resolution at "0" drift distance and D_t diffusion coefficient.
- Straight line fit yields: D_t = 174 µm.√cm @ 660 V.cm⁻¹ D_t = 145 µm.√cm @ 660 V.cm⁻¹

 $D_t = 180 \ \mu m. \sqrt{cm} \ from MAGBOLTZ$

for
$$t_{bin} = 25$$
 ns
for $t_{bin} = 10$ ns

Gas On Slimmed Silicon Pixels

GOSSIP

- Only "Slow" clock distribution, 40 MHz "Fast" clock from local oscillator per pixel, 560MHz
- 4 bit TDC & latency counter > 1.78 ns resolution & 350 ns range

Gossip ageing results

Fred Hartjes NIKHEF

MPGD workshop CERN, September 10-11, 2007

Ageing by mip irradiation

- Using ⁹⁰Sr source 5 GBq
 - 1 2 MeV electrons (mips)
 - Mip rate up to 1.8 GHz
- Source set-up
 - Source mounted in Perspex block
 - Sample moved by stage towards source (remotely controlled)

Source housing

MPGD workshop CERN, September 10-11, 2007

Detector: GOSSIP 21 chamber

Sample mounted on small PCB
Drift volume 13 x 13 mm, 1.24 +/- 0.01 mm high
Closed gas volume of 210 µl
Signal electrode: 2 x 2 mm structure of 1089 pads (red) on matrix having 60 x 60 µm pitch
Surrounding structure (guard) read out as well
Micromegas has circular holes on same pitch

Fred Hartjes

Signal electrode

Guard

What do we expect?

• Distance (centre source to centre drift volume) 4.7 - 25 mm

 \diamond => maximum theoretical rate 1.8 x 10⁹ tracks s⁻¹ cm⁻²

• 7.2×10^7 tracks s⁻¹ on 2 x 2 mm detection surface (1089 pixels)

Reference: SLHC rate

- Assume 2 x 10¹⁶ mips cm⁻² over 5 year
- => 4 x 10^8 tracks s⁻¹ cm⁻²

Experimental conditions and results

♦ Gas: He/iC₄H₁₀ 78/22

- Drift gap 1.2 mm
- => 5.9 ionisations over drift gap
- => expected ionisation current on detection surface <u>67.9 pA</u>
- For the gas system standard nonclean components were used mostly from brass, copper, Teflon/Peek tubing
- Measured current 185 nA at V_{grid} = -470 V
 - => gain = 2720
- Zero current was automatically checked by moving the sample from the source every two hours

- After 0.8 x 10^{14} mips/cm² (at G = 1000) tripped
- After 1.4 x 10¹⁴ mips/cm² (at G = 1000) tripped again
 - Could not be brought into same gain (trip as soon the sample was moved to the source)

Fred Hartjes

Fred Hartjes

Gossip ageing

Conclusions this ageing test

- GOSSIP ageing is practically absent for fluences up to 1.4 x 10¹⁵ mips/cm² at G = 1000
 - Decrease of gain between 0 and 1%
- Suggesting operation far beyond 10¹⁶ mips/cm²
 - This result does not correspond to an earlier measurement* using an Argon based counter gas and excitation by gammas where 18% decay in signal current was seen after a charge corresponding to the same fluence at G=1000
- Possible reasons are
 - Different counter gas (He vs Ar)
 - Different ionisation (mips vs 8 keV gammas)
 - Other chamber materials

 More measurements are needed (other gases, test beam) to confirm these resuslts

> * H. van der Graaf et al., GridPix: an Integrated Readout System for Gaseous Detectors with a Pixel chip as Anode, presentation at the IMAGING 2006 conference, June 27-30, 2006, Stockholm, Sweden.
> Fred HartjeSubmitted to the proceedings of IMAGING 2006 in Nucl. Instr. and Meth. A.

Further Developments

RELAXD project (Dutch/Belgian) NIKHEF,Panalytical,IMEC,Canberra:

- Chip tiling: large(r) detector surfaces (2x2, 2x4 chips)
- Through Si connectivity: avoiding bonding wires
- Fast readout technology (~5 Gb/s)

Hope for "through Si vias" (with Medipix chips) later this year!

Backup slides

InGrid collection efficiency

- Increase with field line compression (E_a/E_d) and reach a plateau
- More compression for lower optical transparency grids
- Effect of the gas diffusion at the hole entrance: more compression for larger diffusion gas

Ion backflow fraction Preliminary results in Ar 5% C_4H_{10}

- Annoying feature: small InGrid area
 - requires high primary Q density to get significant ${\rm I_0}$
 - Backflowing ions may recombine with primary e- !
 - Fine tuning of the collimation, the Xgun power (I₀ and Q density) and the gas gain

Results

- Curves follows 1/x trend
- With σ ~ 14.2 μm over the 70 μm gap

Pitch (um)	σ/p	C (model)	C (measure)
20	0.71	1	0.9
32	0.44	1.2	1.3
58	0.25	2.5	2

Drift time measurement

Pixel cell mask hit enable self clear preamp discriminator LFSR input TDC Α pad control bit threshold 4 adjust LFSR enable fast conf. reg. test 4 bit OSC. bit DAC 4 ock 6 bit conf. data conf. clock enable clea threshold test pulse bias lines υ event eset data Only "Slow" clock distribution, 40 MHz "Fast" clock from local oscillator per pixel, 560MHz

- 4 bit TDC & latency counter > 1.78 ns resolution & 350 ns range.
- 4 bit DAC for threshold tuning
- control register for masking, test-pulse enable and DAC

R. Kluit Nikhef Amsterdam

Example

[¥]Note that this number depends on the pdf value

Gas: Kr/DME 74/26

Fred Hartjes