Searches for Black Holes in ATLAS

James Frost

IOP Institute of Physics

Institute of Physics Half-day Meeting

Wednesday 7th December 2011

James Frost (University of Cambridge)

IOP Half-Day Meeting

Wed 7th December 2011 1 / 56

- Extra Dimensions
- Black Hole Formation and Decay
- The ATLAS Experiment at the LHC
- Searches for Black Holes
- Summary

- E - N

< A

The Hierarchy Problem

- Why is the fundamental scale for gravity: $M_{Pl} \sim 10^{16}$ TeV, so large compared to the electroweak energy scale: $M_{EW} \sim 1$ TeV
- Why is gravity so weak?

See e.g. N.Arkani-Hamed et al. hep-ph/9803315, L. Randall & R. Sundrum hep-ph/9905221

- ∃ ►

The Extra Dimensions Solution

Solve with Extra Dimensions

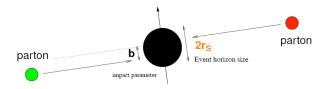
• Assume spacetime is (4+n) dimensional.

$$F_{r \ll R} \sim \frac{1}{\underset{(4+n)}{\mathbf{M}_{(4+n)}^{2+n}}} F_{r \gg R} \sim \frac{1}{\underset{(4+n)}{\mathbf{M}_{(4+n)}^{2+n}}} + KK \dots$$
Take $M_{EW} \sim 1$, TeV - M_{4+n} as fundamental scale \rightarrow 4D gravity diluted

Two main classes of models:

- Large extra dimensions (ADD)
- (Usually a) Single warped extra dimension (RS).

N.B. Deviations at short distances, KK modes.

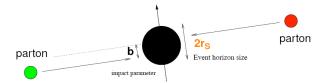

 \rightarrow constraints

James Frost (University of Cambridge)

nac

Black Hole Formation

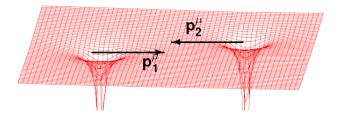
The black disk approach


- Thorne's hoop conjecture (*Magic without Magic 231 (1972)*): For a given concentration of matter/energy, if it fits inside a hoop with the Schwarzchild radius $r_{\rm S}$ for that mass, then a black hole forms.
- Black disk cross section:

$$\sigma_{\text{disk}} \sim \pi \mathbf{r}_{\mathbf{S}}^{\mathbf{2}}, \ \mathbf{r}_{\mathbf{s}} = \frac{C_n}{M_{4+n}} \left(\frac{\sqrt{s}}{M_{4+n}}\right)^{\frac{1}{n+1}}$$

S. B. Giddings and S. D. Thomas, hep-ph/0106219 S. Dimopoulos and G. Landsberg, hep-ph/0106295

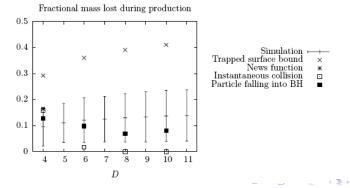
James Frost (University of Cambridge)


Production - Short-comings

- Why not b>2r_S?
- Angular momentum?
- Losses in gravitational radiation?
- Spin and charge of the partons.

nac

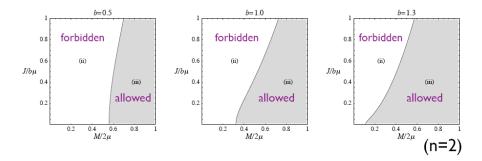
Production Model I



- Ideally, set up the spatial metric for two highly boosted particles (modelled as black holes).
- Include spin and charge.
- Evolve system.
- Obtain final metric and radiation.

Production Model II

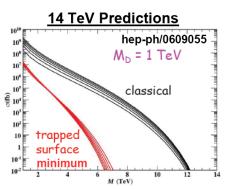
Trapped Surface Results


- Trapped surface methods give bounds on the maximum impact parameter and hence parton-level cross section.
- Bounds on the mass (M) and angular momentum (J) trapped for a given impact parameter, b.
- Mass bounds compared with approximate methods for b=0

James Frost (University of Cambridge)

Production Losses

H. Yoshino, V. S. Rychkov hep-th/0503171


 For each value of impact parameter b, a maximum bound can be placed on the fraction of the black hole mass and angular momentum lost in radiation.

- E - N

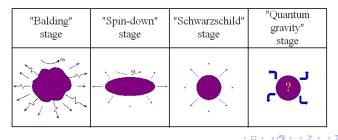
nac

Inelasticity

- Black hole cross-sections can be large.
- But assuming the maximum allowed losses reduces the differential cross section dramatically.
- Large uncertainties.

- When is the semi-classical approach valid-how far above M_{Pl} ?
- Can argue the Compton wavelength of colliding particle of energy E/2 must lie within the Schwarzschild radius \rightarrow bounds on E/M_{Pl} , particularly in the RS case.
- Expect interactions, with lower entropy and multiplicity below this with similar cross sections. Randall, Meade arXiv:0708.3017

James Frost (University of Cambridge)


- Numerical relativity simulations in (3+1) and higher dimensions, Shibata and Yoshino arXiv:0907.2760, Sperhake et al. arXiv:0907.1252,1006.3081
- Effects of brane tension, thickness and extra dimensional geometry not completely modelled.
- Quantum gravity effects (see Xavier's talk) input partons have charges.
- What is the threshold for equilibrium black hole production? Randall, Meade arXiv:0708.3017

.

Black Hole Lifecycle

- Black holes formed will be rapidly rotating, asymmetric, and "hairy".
- Four stages of subsequent evolution.
 - Balding Phase
 - Spin-down Phase
 - Schwarzschild Phase
 - Planck (Quantum) Phase

Question: Is this still true for very light black holes?

The central result of Hawking's calculation is:

- Classically, black hole do not emit, only accrete.
- However, in 1974, Hawking found a quantum instability.
- Effectively, the large gravitational field leads to spontaneous emission of particle via pair creation at the event horizon (cf. e⁺e⁻ pairs in a strong electric field).
 → Black hole evaporates and slowly loses mass
- Gravity couples universally, so all SM particles can be emitted.
- The spectrum is that of a grey-body, with a characteristic temperature *T_H* (non-rotating case):

$$T_H = \frac{n+1}{4\pi r_S}$$

.

Hawking Radiation

Non-rotating case

$$\frac{\mathrm{d}\mathbf{N}_{h}}{\mathrm{d}\mathbf{t}\mathrm{d}\omega\mathrm{d}\Omega} = \frac{1}{2\pi} \sum_{j=|h|}^{\infty} \sum_{m=-j}^{j} \frac{\mathbb{T}_{k}^{(n)}(\omega)}{\exp(\omega/\mathsf{T}_{\mathsf{H}}) \pm \mathbf{1}} \left|{}_{h}Y_{j}^{m}(\Omega)\right|^{2}$$

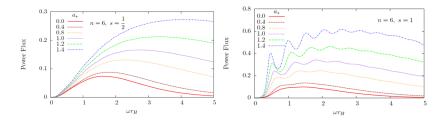
- Has a thermal, black-body character, with Planckian factor and temperature T_H...
- ... modified by a transmission coefficient (grey-body factor), codifying the probability of escaping the gravitational field.
- Spin-dependent through helicity label h.
- Isotropic angular distribution.

.

Qualitative Features

• Universal thermal spectrum for particles emitted (modulo spin).

Particle type	spin-0	spin-1/2	spin-1
Quarks	0	72	0
Gluons	0	0	16
Charged Leptons	0	12	0
Neutrinos	0	6	0
Photon	0	0	2
Z^0	1	0	2
W^+ and W^-	2	0	4
Higgs boson	1	0	0
Total	4	90	24

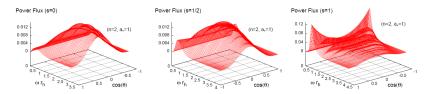

- Integrating the spectrum gives a high multiplicity.
- Implications for colliders expect signature to have multiple hadronic jets.

James Frost (University of Cambridge)

(日)

Rotation Effects I

• Once the grey-body factors are known, the power fluxes and angular distributions can be determined.

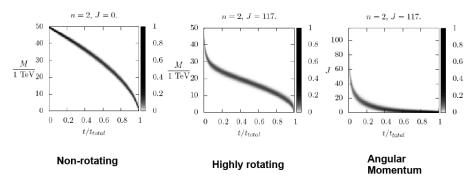


Power spectrum of fields for brane emission with n=6 and a range of BH oblateness.

- Rotation increases the mean energy and total flux dramatically.
- Harder spectrum.

Rotation Effects II

- Rotation breaks the isotropic emission spectrum.
- Higher energy emissions are more equatorial in character.
- Low energy vector emissions are more axial with each polarisation contributing differently to the angular distribution.
- Azimuthal symmetry remains.

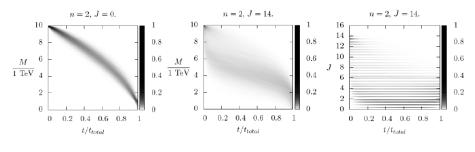

Angular power fluxes for scalars, fermions and vectors. hep-th/0507274,hep-th/0511163,hep-th/0608193 hep-th/0212108,hep-th/0503052,hep-th/0602188

James Frost (University of Cambridge)

Black Hole Evolution

Semi-classical limit: BH mass 50 TeV

JF et al. arXiv:0904.0797


- Shows expected semi-classical behaviour:
- Schwarzschild: steady loss of mass until Planck phase.
- Rotating: mass lost more rapidly during spin-down phase.

James Frost (University of Cambridge)

Black Hole Evolution II

LHC energies: BH mass 10 TeV

JF et al. arXiv:0904.0797

Non-rotating

Highly rotating

Angular Momentum

- Evaporation is less smooth, due to fewer emissions.
- Statistical fluctuations are larger, and trends less definite.

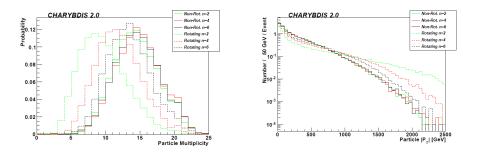
James Frost (University of Cambridge)

Tools and Limitations

- During the 2000s, there has been much progress in the theory describing these phenomena.
- Encoded in several Monte-Carlo generators to simulate these events and allow their analysis in greater detail.
 - Charybdis 2 JF et al. arXiv:0904.0979,
 - BlackMax D. Dai et al. arXiv:0902.3577,
 - QBH D. Gingrich arXiv:0911.5370
- There are, however, still considerable uncertainties over some modelling aspects.
- Need careful consideration in experimental searches
 - Production cross-sections, missing energy.
 - Graviton emission in Hawking phase
 - Remnant modelling Quantum gravity important can have a large effect on multiplicity, often targeted by experimental searches.
 - Quantum effects...

< □ > < 同 > < 三 > < 三

What's different about black holes?

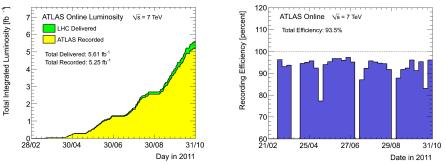

Signatures of semi-classical black holes:

- Potentially very high cross sections.
- High multiplicity events, with multiple very high p_T objects.
- Rotation \rightarrow slightly reduced multiplicity but harder spectrum
- Wide range of SM particles many hadronic jets, but also highly boosted photons and leptons → hard to replicate through other BSM scenarios.
- Potentially large missing energy from losses in formation.

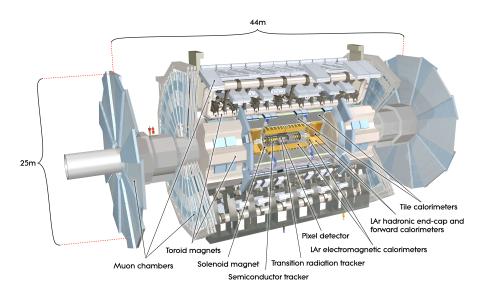
→ ∃ →

Phenomenology

Rotating versus Non-rotating black holes

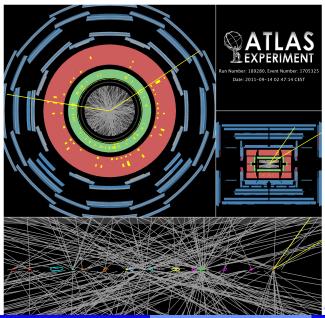

- Very high p_T objects.
- Multiple objects in the final states.
- Harder spectrum, but correspondingly lower multiplicity from rotating black holes

- A 🖻 🕨


The ATLAS Experiment in 2011

2011 has been a very successful year for the ATLAS and for the LHC generally. The ATLAS Experiment has been taking data very efficiently - we now have recorded over 5 fb^{-1} !

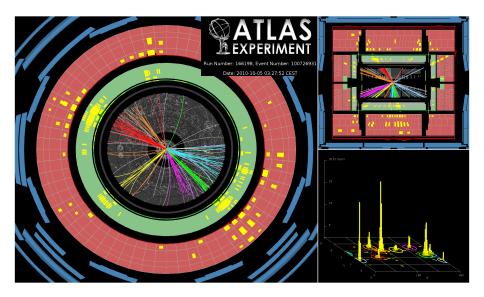
- summer results shown here are based on the first \sim 1 fb⁻¹



The ATLAS Detector

イロト イヨト イヨト イヨト

Collision Events in 2011



James Frost (University of Cambridge)

IOP Half-Day Meeting

日本・モン・モン

Collision Events - many jets, even in 2010

James Frost (University of Cambridge)

IOP Half-Day Meeting

500

イロト イヨト イヨト イヨ

- ADD Extra-dimensional models with low scale gravity allow for the production of non-perturbative gravitational states such as black holes and string balls.
- A fundamental gravity scale *M_D* in the TeV range would allow exploration of such states at the LHC.
- In such models the produced black hole mass ranges from M_{TH} to \sqrt{s} .
- These states decay to multiple high p_T particles, of all SM types.
- Expect a range of multiplicities from signal this is model-dependent but relatively high - not below 3 particles emitted.

(日)

Why look for TeV-scale gravity with leptons?

- Expect a wide range of particle types to be produced, determined primarily by the SM degrees of freedom and gravitational transmission factors.
- Expect leptons in signal, with a reasonable (15-50%) chance per event.
- Much more powerful channel (SM bkgs dramatically reduced), at the cost of little inclusivity (few leptons in e.g. split brane scenarios).
- Most robust signatures suggest (relatively) high multiplicity and presence of leptons.

(日)

Searches for TeV-gravity signatures in final states with leptons and jets http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CONFNOTES/ATLAS-CONF-2011-147/

(4) (5) (4) (5)

Searches for TeV-gravity signatures in final states with leptons and jets

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ ATLAS-CONF-2011-147/

- Search for deviations from the Standard Model in final states with multiple, high-p_T objects including at least one lepton.
- Such deviations are predicted in scenarios of low scale gravity.
- Construct the scalar p_T sum of objects (jets and leptons) in the event, requiring 3 high p_T objects - the signal is manifest as an excess at high values.
- Perform a counting experiment in several high Σp_T signal regions.
- In the absence of a signal set CLs 95% C.L. limits on the effective cross section for high-∑p_T multi-object final states containing a high-p_T (> 100 GeV) isolated lepton inside experimental acceptance.
- For black hole and string ball benchmark samples, set exclusion contours from the combination of the channels in a plane of M_D and M_{TH} .

James Frost (University of Cambridge)

29/56

- Data: integrated luminosity 1.04 fb⁻¹ for e/γ and muon streams.
- Event Selection
 - Single lepton triggers.
 - Select reconstructed physics objects
 - ★ High quality electrons and muons with p_T > 40 GeV, and $|\eta|$ < 2.47 (electrons), $|\eta|$ < 2.0 (muons).
 - ★ Jets reconstructed using the Anti- k_T algorithm, with an R parameter R = 0.4, and $p_T > 40$ GeV and $|\eta| < 2.8$.

• Signal MC:

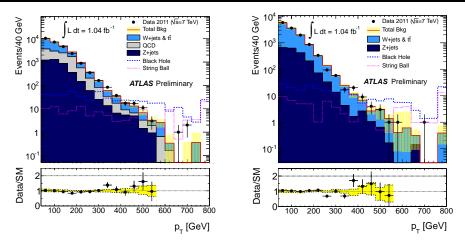
- Use both Charybdis and BlackMax generators.
- Two samples used to guide the analysis and illustrate signal event properties.
- Benchmark samples produced for both string balls and black holes.
- Different models for some important theoretical modelling uncertainties.

990

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Preselection, Signal and Control regions ATLAS-CONF-2011-147

- Main discriminating observable:
 - $\sum p_{T}$ Scalar p_{T} sum of all selected leptons and jets $(p_{T} > 40 \text{ GeV}).$
- Preselection requirements are used to select an event sample with similar kinematics and composition to the signal regions for this search. Events are required to have:
 - At least 3 objects (e,μ ,jet) above a 40 GeV p_T threshold.
 - $\sum p_{\rm T} > 300$ GeV.
 - Electron channel events require the leading electron to be tight.
 - Most control regions, used to estimate and determine the backgrounds, consider subsets of these events.
- Signal Regions raise the object and $\sum p_{T}$ requirements further:
 - At least 3 objects (e,μ ,jet) above a 100 GeV p_T threshold.
 - ► Several signal regions defined with $\sum p_{\rm T}$ thresholds ranging from 700 1500 GeV.


31/56

Background Estimation ATLAS-CONF-2011-147

- The dominant Standard Model sources of background are: W+jets, Z/₂*+jets, tt and QCD multijet processes (e only).
 - QCD electron channel: Estimated by a data-driven matrix method, considering the signal region with the tight electron requirement, and by relaxing it to medium.
 - QCD muon channel: Predicted to be negligible by MC simulations and ABCD method in data.
 - Z+jets estimated using a partially data-driven method.
 - Monte Carlo predictions are normalised to the data in a control region and extrapolated to the signal region using Monte Carlo simulations.
 - ★ Events with 2 opposite-sign electrons (muons) with $80 < m_{\parallel} < 100$ GeV, and $300 < \sum p_{\rm T} < 700$ GeV.
 - W-jets and tt
 processes combined estimate, due to their similar behaviour in ∑p_T.
 - ★ Normalised according to data in a control region with one e (μ), 40 < m_T < 100 GeV, 30 < E_T^{miss} < 60 GeV and 300 < $\sum p_T$ < 700 GeV.

Preselection Distributions - leading lepton p_T

Electron Channel - left, Muon Channel - right ATLAS-CONF-2011-147

Yellow band indicates uncertainties from finite statistics, jet and lepton energdy scales and resolutions.

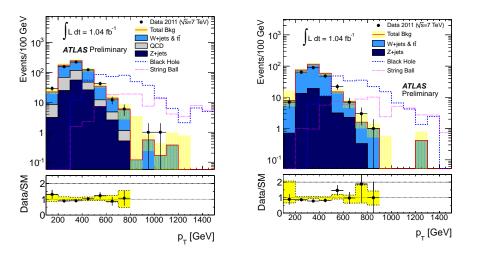
James Frost (University of Cambridge)

IOP Half-Day Meeting

33 / 56

Results ATLAS-CONF-2011-147

• Event yields following the data-driven background estimates described.

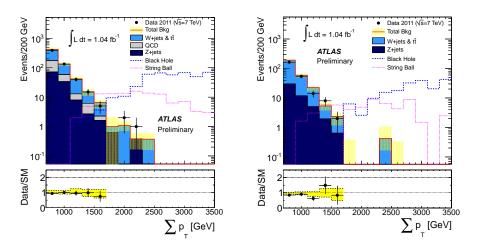

$\sum p_{\rm T} ({\rm GeV})$	QCD	W+jets/tt	Z+jets	Total SM	Data
> 700	$137 \pm 10 \pm 45$	$371\pm10\pm77$	119 \pm 4 \pm 22	627 \pm 15 \pm 92	586
> 800	$75\pm7\pm25$	$210\pm 6\pm 42$	$74\pm4\pm13$	$358\pm10\pm51$	348
> 900	$42\pm5\pm14$	122 \pm 5 \pm 28	$46.9\pm2.8\pm8.6$	$210\pm8\pm33$	196
> 1000	$24.6 \pm 4.2 \pm 8.0$	$73\pm3\pm17$	$22.2 \pm 1.8 \pm 4.5$	119 \pm 5 \pm 20	113
> 1200	$8.1 \pm 2.5 \pm 2.7$	$28.5 \pm 1.8 \pm 7.6$	$9.1 \pm 1.0 \pm 1.9$	$45.7 \pm 3.2 \pm 8.3$	41
> 1500	$1.3 \pm 1.1 \pm 0.4$	$6.3\pm0.8\pm2.5$	$2.6\pm0.5\pm0.5$	$10.2 \pm 1.4 \pm 2.6$	8

$\sum p_{\rm T} ({\rm GeV})$	W+jets/tt	Z+jets	Total SM	Data
> 700	$236\pm7\pm43$	49 \pm 3 \pm 11	$285\pm8\pm44$	241
> 800	$129 \pm 4 \pm 25$	$32.0 \pm 2.4 \pm 7.5$	161 \pm 5 \pm 26	145
> 900	$71 \pm 3 \pm 16$	$19.5 \pm 1.7 \pm 5.0$	91 \pm 3 \pm 16	78
> 1000	$38.9 \pm 2.3 \pm 8.3$	$13.1 \pm 1.3 \pm 3.1$	$52.0 \pm 2.6 \pm 8.9$	46
> 1200	$9.9 \pm 1.2 \pm 3.6$	$4.0 \pm 0.6 \pm 1.2$	$14.0\pm1.3\pm3.8$	15
> 1500	$2.2 \pm 0.5 \pm 1.1$	$0.6\pm0.2\pm0.4$	$2.8\pm0.5\pm1.1$	2

 No evidence of a signal - p-values for all signal regions lie between 0.43–0.47.

Final Distributions I - leading object p_T

Electron Channel - left, Muon Channel - right


590

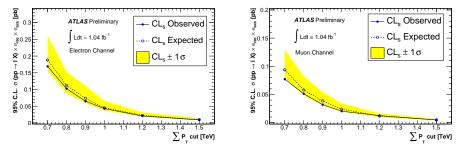
35 / 56

< 🗇 >

Final Distributions II - Σp_T

Electron Channel - left, Muon Channel - right

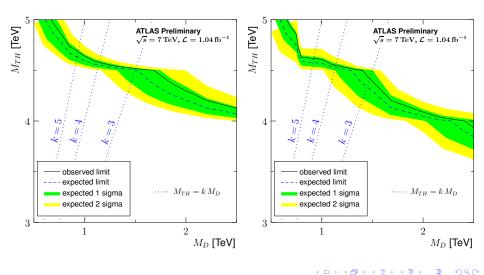
590


Interpretation I

Model-independent limits Electron Channel - left, Muon Channel - right

Effective cross section limits set: $\sigma_{\text{eff}} = \sigma \left(pp \rightarrow \ell X \right) \cdot \epsilon_{\text{rec}} \cdot \epsilon_{\text{acc}}.$

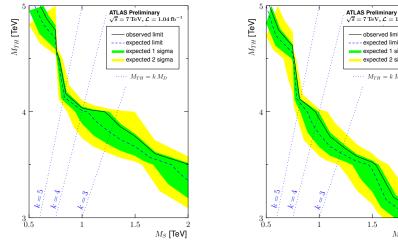
For the electron (muon) channel $\epsilon_{\text{rec}} \cdot \epsilon_{\text{acc}}$ is $(74 \pm 6) \% ((51 \pm 5) \%)$.

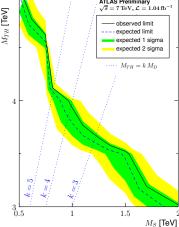

$\sum p_{\rm T} ({\rm GeV})$	$\sigma_{\rm eff}$ 95% C.L. Upper Limit (fb)	
	Observed (Expected)	
	Muon Channel	Electron Channel
> 700	77 (94)	169 (188)
> 800	51 (58)	102 (112)
> 900	32 (39)	65 (73)
> 1000	20 (24)	43 (45)
> 1200	13 (12)	20 (22)
> 1500	4.8 (4.8)	8.7 (9.7)

Interpretation II

Benchmark model limits - Rotating Black Holes

Models using a high (left) and low (right) multiplicity remnant model


James Frost (University of Cambridge)


IOP Half-Day Meeting

Wed 7th December 2011 38 / 56

Interpretation II

Benchmark model limits - Stringballs Non-rotating (left) and Rotating (right) models.

- A search for TeV-scale gravity signatures (black holes and string balls) in final states with at least 3 high p_T objects, including one lepton, using a luminosity of 1 fb⁻¹.
- No deviation from Standard Model predictions is observed.
- Limits are set on models of TeV-scale gravity:
 - As exclusion contours for benchmark models as functions of the fundamental gravity scale and mass threshold.
 - On the effective cross section for new physics in these final states.

.

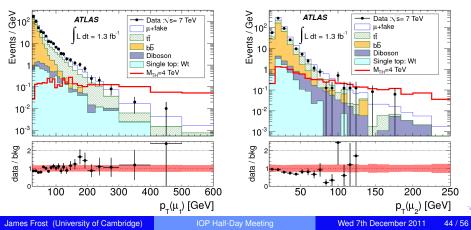
Search for Strong Gravity Signatures in Same-sign Dimuon Final States using the ATLAS detector at the LHC http://arxiv.org/abs/1111.0080

.

< 47 ▶

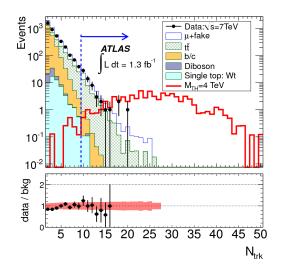
Search for black holes with same-sign dimuons arXiv:1111.0080

- Look for final states that are prevalent in black hole events with low rates from Standard Model processes.
- One candidate is same-sign dilepton events here look in the muon channel for dimuon candidates.
- Require two muons with leading $p_T > 25$ GeV, subleading $p_T > 15$ GeV and $|\eta| < 2.4$
- Require the muon leading in p_T to be isolated.
- Maintain signal efficiency by dropping this requirement on the sub-leading muon.
- Require the event to have at least 10 tracks.


- Black hole events should have a relatively high multiplicity of high energy particles, and consequently many tracks in the events.
- Use the event track multiplicity to discriminate between signal-rich and background-rich regions.
- Perform a counting experiment in a pre-defined signal region.
- Use 1.3 fb^{-1} of 2011 collision data.

★ ∃ ► 4

Muon Distributions


Distributions for same-sign dimuon events before N_{track} cut

- Same-sign dimuons from uncorrelated decays W+jets, Z+jets, low *p_T* QCD.
- Same-sign dimuons from correlated decays tt
 t
 t
 , bb
- In signal region, $t\bar{t}$ dominates, followed by μ +fake.

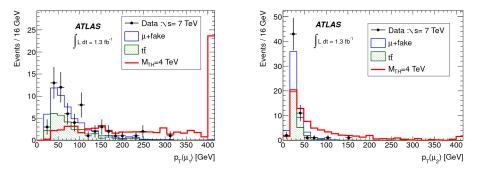
Track Multiplicity arXiv:1111.0080

- Use track multiplicity $(p_T > 10 \text{ GeV}, |\eta| < 2.4)$ to separate signal and background processes.
- Define signal region as $N_{\text{track}} >= 10.$
- Use lower multiplicity region to estimate and constrain backgrounds.

Background Estimation arXiv:1111.0080

- *tt* derived from Monte-Carlo
- μ+fake fake rate determined per track from W events in data, then applied to muon+track events to get dimuon estimate.
- $b\bar{b}$ estimated from data in background region and extrapolated into signal regime using N_{tracks}.

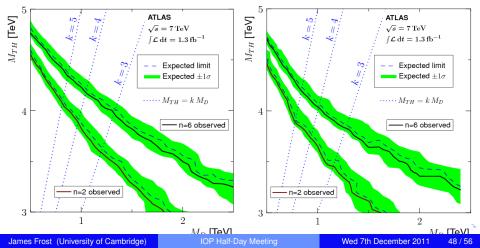
Process	Events	
b/c	$0.77 \pm 0.77 (syst)$	
$tar{t}$	$29.2 \pm 4.1(\text{syst}) \pm 1.1(\text{lumi})$	
μ +fake	$25.6 \pm 0.3 (\text{stat}) \pm 5.2 (\text{syst})$	
Other backgrounds	$0.25 \pm 0.11(\text{syst})$	
Predicted	$55.8 \pm 0.3(\text{stat}) \pm 6.7(\text{syst}) \pm 1.1(\text{lumi})$	
Observed	60	
Signal $M_{TH} = 4$ TeV	$72.1 \pm 4.5 (syst)$	


• No sign of a signal \rightarrow set limits on black hole models.

James Frost (University of Cambridge)

IOP Half-Day Meeting

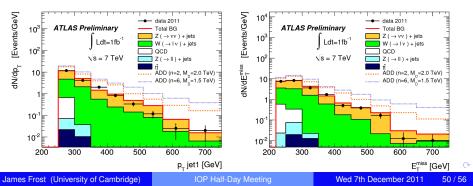
46 / 56


- Inevitably, limited data/background statistics in signal region
- Data agreement with the background estimate is good.

Model-dependent Limits

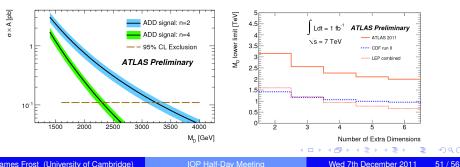
arXiv:1111.0080

 95% C.L. exclusions for non-rotating (left) and rotating (right) black hole models with 2 and 6 extra dimensions, using the CL_s prescription.

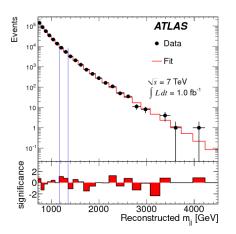


- Search undertaken for black holes in a dimuon final state
- Using track multiplicity to separate signal and background processes.
- No excess over Standard Model expectations observed in 1.3 fb⁻¹ of 2011 collision data.
- Exclusion limits placed in a plane of M_D and M_{TH} for black holes.

A. The hei


Monojet plus Missing Energy Final States (1) [ATLAS-CONF-2011-096]

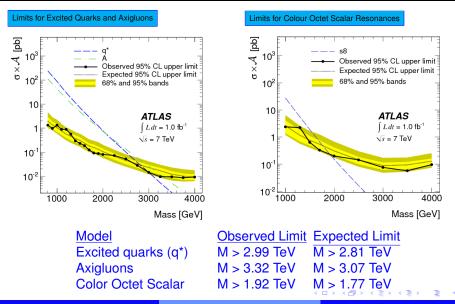
- Search for events with large E_T^{miss} and exactly 1 high p_T jet
- Veto events with a reconstructed lepton (e or μ)
- Search dominated by Z/W+jets Standard Model Backgrounds
- 'high p_T ' search region shown below:
 - Jet $p_T > 250 \text{ GeV}$, $|\eta| < 2.0$, $E_T^{miss} > 220 \text{ GeV}$.
 - ▶ No second (third) jet above $p_T > 60$ (30) GeV, $\Delta \phi$ (*jet*, E_T^{miss}) < 0.5.


Monojet plus Missing Energy Final States (2) [ATLAS-CONF-2011-096]

- No excess observed
- Look to exclude ADD models and set limits on the (4+n) dimensional Planck scale, M_D :
 - ▶ n=2, M_D > 3.16 TeV.
 - ▶ n=4, M_D > 2.27 TeV
 - ▶ n=6, M_D > 1.99 TeV

James Frost (University of Cambridge)

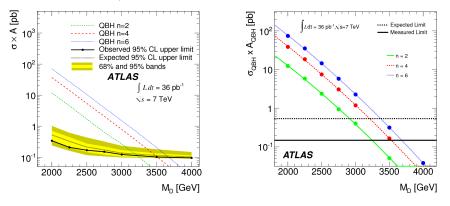
Dijet Resonances (1) [arXiv:1108.6311]



• Anti-K_{\perp} R = 0.6 jets.

- Select events with two high p_T jets with |y^{*}| < 0.6.
- Require highest jet $p_T > 180 \text{ GeV}$ $\rightarrow m_{jj} > 717 \text{ GeV}.$
- Compare data dijet mass distribution with a binned QCD background distribution, described by a smooth functional form.
- Search for resonances in the spectrum.
- Most significant discrepancy in blue - p-value of 0.62

52/56


Dijet Resonances (2) [arXiv:1108.6311]

James Frost (University of Cambridge)

IOP Half-Day Meeting

2010 results on quantum black holes

590

Summary

- The LHC has performed superbly during 2011.
- Efficient ATLAS data-taking has recorded an integrated luminosity exceeding 5 fb⁻¹.
- Searches in ATLAS for black hole signatures have found no excesses beyond the Standard Model so far in the first 1 fb⁻¹ of this data, however....
- Increased luminosity rapidly opening up new model phase spaces for searches.
- Many more results to come in the coming days, weeks and beyond!
- Many different search strategies and approaches to looking for black holes.
- Increasingly stringent limits are being placed upon the possible cross-section for these states.
- Exclusion bounds extend into the 3 -5 TeV range.
- However, these often assume the black disc cross-section and
 high multiplicity

James Frost (University of Cambridge)

IOP Half-Day Meeting

BACKUP SLIDES

James Frost (University of Cambridge)

IOP Half-Day Meeting

Wed 7th December 2011 56 / 56

э

イロン イロン イヨン イヨン