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What are BH QNMs

Particles and fields in the vicinity of a BH slightly change
the background space-time of a system. That is, we can
consider these as a perturbation.

At the classical level perturbations can be described by
damped characteristic modes, called QNMs.

The complex frequencies of such oscillations do not depend
on the manner of excitation but only on the parameters of
the BH and the field under consideration. Therefore, they
are usually called the “fingerprints” of a BH.



In order to calculate QNMs, we impose the QNM b.c. for
the wave equations, i.e. we require that at the BH horizon
we have only purely in-going waves,

R(r∗ → −∞) ∝ exp(−iω̃r∗) ,

while we should have only purely out-going waves at spatial
infinity, i.e.

R(r∗ →∞) ∝ exp(iΩr∗) ,

where QNMs are solutions of the master equations
discussed later, satisfying the above b.c.



How do they relate to
Emission spectra

In the same way, as QNMs are an essential classical
characteristic of a BH, the thermal Hawking radiation is its
essential quantum feature that carries information about
the dynamics of evaporation of the BH.

For calculations of the emission rates of particles due to
Hawking radiation, one needs first to solve the problem of
classical scattering in order to obtain the grey-body factors.
This implies the posing of classical scattering b.c.



At the event horizon, this again means imposing the
condition of purely in-going wave, while, at spatial infinity
(r →∞), we have a different condition,

R(r) # Zinexp(−iΩr∗) + Zoutexp(iΩr∗) ,

where Zin and Zout are integration constants which
correspond to the in-going and out-going waves,
respectively. Thus, we would like to know which portion
of particles will be able to pass through the barrier of the
effective potential.

If the coefficients Zin and Zout are calculated, one can find
the absorption probability

|Al,m| = 1− |Zout/Zin|2



The emission rates for the energy, charge and angular
momentum are proportional to the grey-body factors, and
are expressed as
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Here, we perform the summation over all possible values of
the quantum numbers l and m.

Thus, we could say that the QN spectrum and Hawking
radiation are, respectively, classical and quantum
“fingerprints” of a BH.



QNMs and Hawking radiation also have one technical point
in common: analysis of QNMs as well as of the Hawking
radiation (in semi-classical approximations) begin from the
linear perturbations of the fields under consideration whose
dynamics should be reduced to a single wave-like equation,
called the master equation.



The Master Equations

Perturbations of a BH space-time can be performed in two
ways:
- by adding fields to the BH space-time or
- by perturbing the BH metric (the background) itself.

In the linear approximation (where a field does not
backreact on the background), the first type of perturbation
is reduced to the propagation of fields in the background of
a BH, which is, in many cases, a general covariant equation
of motion of the corresponding field.



The covariant form of the equation of motion is quite
different for fields of different spin s in curved backgrounds.
Thus, for a scalar field Φ of mass µ in the background of
the metric gµν , the e.o.m. is the general covariant
Klein-Gordon equation

(∇ν∇ν − µ2)Ψ = 0 ,

where ∇ν is the covariant derivative. The above equation
can be written explicitly as follows:

1√
−g

∂ν

(
gµν√−g∂µΨ

)
− µ2Ψ = 0 (s = 0).



For massive Dirac fields in a curved background gµν , the
e.o.m. reads

(γae µ
a (∂µ + Γµ) + µ)Φ = 0 , (s = ±1/2)

where µ is the mass of the Dirac field, and e µ
a is the tetrad

field, defined by the metric gµν :

gµν = ηabe
a

µ e b
ν , gµν = ηabe µ

a e ν
b ,

e µ
a e b

µ = δb
a, e a

µ e ν
a = δν

µ ,

where ηab is the Minkowskian metric, γa are the Dirac
matrices: {γa, γb} = 2ηab, and Γµ is the spin connection

Γµ =
1
8
[γa, γb] gνλ e ν

a ∇µe λ
b .



For massive vector perturbations we have the general
covariant generalization of the Proca equations. For a
vector potential Aµ, one has

∇νFµν − µ2Aµ = 0, Fµν = ∂µAν − ∂νAµ .

In a curved space-time these equations read

1√
−g

∂ν(Fρσgρµgσν√−g)− µ2Aµ = 0 . (s = 1)

When µ = 0 in the above form of the Proca equation,
we obtain the Maxwell equation

∂ν((∂αAσ − ∂σAα)gαµgσν√−g) = 0.



There may be various generalizations of the massive scalar,
spinor, and vector fields considered above. Thus, if we
study perturbations of massive charged particles in scalar
electrodynamics in a curved charged background, we have
to deal with a complex scalar field

(DνDν − µ2)Ψ = 0 ,

where Dν = ∇ν − ieAν is an “extended” covariant
derivative, and e is the charge of the particle. Finally, we
find that the e.o.m. of the charged scalar field in a curved
space-time reads

1√
−g

∂ν

(
gµν√−g(∂µΨ− ieAµΨ)

)
−ieAν∂νΨ−(µ2+e2AνAν)Ψ = 0



In a similar fashion, the massive charged Dirac particle is
described by the e.o.m. with an extended derivative
∂µ → ∂µ − ieAµ,

(γae ν
a (∂ν + Γν − ieAν) + µ)Φ = 0

Another type of perturbation, metric perturbations, can be
written in the linear approximation in the form

gµν = g0
µν + δgµν ,

δRµν = κ δ

(
Tµν −

1
D − 2

Tgµν

)
+

2Λ
D − 2

δgµν

Linear approximation means that the terms of order
∼ δg2

µν and higher are neglected. The unperturbed space-
time given by the metric g0

µν is called the background.



Separation of variables

The first step toward the analysis of BH perturbation
equations is their reduction to a 2d wavelike form with
decoupled angular variables. Once the variables are
decoupled, an equation for the radial and time variables
usually has the Schrödinger-like form for stationary
backgrounds,

−d2R

dr2
∗

+ V (r, ω)R = ω2R ,

and can be treated by a number of sophisticated and well
developed numerical, analytical, and semi-analytical
methods.



As a simple example, for the massless scalar field on the
Schwarzschild background
(g0

µν : gtt = −g−1
rr = 1− 2M/r, gθθ = gφφ sin−2 θ = r2),

and after using a new variable dr∗ =
dr

1− 2M/r
,

where the coordinate r∗ maps the semi-infinite region from
the horizon to infinity into the (−∞, +∞) region (these
coordinates are known as tortoise coordinate).

The wave function can be written as

Ψ(t, r, θ, φ) = e−iωtY%(θ, φ)R(r)/r ,



produces a potential

V (r) =
(

1− 2M

r

) (
!(! + 1)

r2
+

2M(1− s2)
r3

)
,

where s = 0, and ! is the multipole quantum number, which
arises from the separation of angular variables by expansion
into spherical harmonics

∆θ,φY#(θ, φ) = −!(! + 1)Y#(θ, φ) ,

exactly in the same way as happens for the hydrogen atom
in QM when dealing with the Schrödinger equation.

When s = 1 the effective potential corresponds to the
Maxwell field. When s = 2 we obtain the effective
potential of the gravitational perturbations of the axial
type, which was derived by Regge and Wheeler



The separation of variables, however, is not always so easy.
The variables in perturbation equations cannot be
decoupled for perturbations of an arbitrary metric. For this
to happen, the metric must possess sufficient
symmetry, expressed in the existence of the Killing vectors,
Killing tensors, and Killing-Yano tensors.

The choice of appropriate coordinates is crucial for
separation of variables.



Methods for QNM calculations

Remembering that Ψ ∼ e−iωt, we write the QNM
frequencies in the following form:

ω = ωRe − iωIm .

Here ωRe is the real oscillation frequency of the mode and
ωIm is proportional to its damping rate. Positive ωIm

means that Ψ is damped, negative ωIm means an
instability.



Note also that for Kerr BHs, as well as for other
astrophysical or string theory motivated cases, QNMs form
a countable set of discrete frequencies

QNMs calculated in the linear approximation are in good
agreement with those obtained by the fully nonlinear
integration of the Einstein equations, at least at sufficiently
late time.



Mashoon method
We start from the usual wavelike equation, with an effective
potential, which depends on some parameter α:

d2Ψ
dr2

∗
+ (ω2 − V (r∗, α)))Ψ = 0 .

Because of “symmetric” b.c. for the QNM problem at both
infinities r∗ → ±∞, it is reasonable to consider
transformations r∗ → −ir∗ and p→ p′, such that the
potential is invariant under these transformations

V (r∗, α) = V (−ir∗, α
′) .

The wave function Ψ and the QN frequency ω transform as

Ψ(r∗, α) = Φ(−ir∗, α
′) , ω(α) = Ω(α′)



The wave equation for Φ and the b.c. will read

d2Φ
dr2
∗

+ (−Ω2 + V )Φ = 0, Φ ∼ e∓Ωr∗ , r∗ → ∓∞ .

These boundary conditions correspond to a vanishing wave
function at the boundaries, such that the QNM problem
is now reduced to the bound states problem for an inverse
potential V → −V .

This potential can be approximated by the Pöschl-Teller
potential,

VPT =
V0

cosh2 α(r∗ − r0
∗)

.

Here V0 is the height of the effective potential and −2V0α2

is the curvature of the potential at its maximum.



The bound states of the Pöschl-Teller potential are well
known, where the QNMs ω can be obtained from the inverse
transformation α′ = iα,

ω = ±
√

V0 −
1
4
α2 − iα

(
n +

1
2

)
, n = 0, 1, 2, . . .

Technically one has to fit a given black hole potential to
the inverted Pöschl-Teller potential.

Note that this method gives quite accurate results for the
regime of high multipole numbers #, i.e. for the eikonal
(geometrical optics) approximation.

Note that there are many techniques to solve for the QN
frequencies, we shall now present only two of these:



WKB method

III II I

−∞ +∞

Ψ ∼ e−iωx Ψ ∼ eiωx

The method is based on matching asymptotic WKB
solutions at spatial infinity and the event horizon with a
Taylor expansion near the top of the potential barrier through
the two turning points.

We rewrite the wave equation as

d2Ψ
dx2

+ Q(x)Ψ(x) = 0 .

where we used x = r∗
and Q(x) = ω2 − V .



The asymptotic WKB expansion

Ψ ∼ exp
(∑∞

n=0
Sn(x)εn

ε

)
.

⇒ S0(x) = ±i
∫ x

Q(η)1/2dη , and S1(x) = − 1
4 lnQ(x) . . .

The two choices of sign above correspond to either
incoming or outgoing waves at either of the infinities

Therefore we have four solutions: ΨI
+, ΨI

−, ΨIII
+ and ΨIII

−
respectively for plus and minus signs in S0 in regions I and
III, with general solution

Ψ ∼ ZI
inΨI

− + ZI
outΨ

I
+, region I ,

Ψ ∼ ZIII
in ΨIII

+ + ZIII
out ΨIII

− , region III .



The amplitudes at +∞ are connected with the amplitudes
at −∞ through the linear matrix relation

(
ZIII

out

ZIII
in

)
=

(
S11 S12

S21 S22

) (
ZI

out

ZI
in

)
.

Now we need to match both WKB solutions with a solution
in region II through the two turning points Q(x) = 0.

If the turning points are closely spaced, i.e. if −Q(x)max #
Q(±∞), then the solution in region II can be well
approximated by the Taylor series

Q(x) = Q0 +
1
2
Q′′

0(x − x0)2 + O((x − x0)3) ,

where region II corresponds to |x − x0| <

√
−2Q0

Q′′
0

≈ ε1/2,

region II. The latter relation gives also the region of validity
of the WKB approximation: ε must be small.



The general solution in region II can be expressed in terms
of parabolic cylinder functions Dν(t),

Ψ = ADν(t)+BD−ν−1(it) . where ν+
1
2

= −iQ0/(2Q′′
0)1/2 .

such that we obtain the elements of the S matrix,

(
ZIII

out

ZIII
in

)
=



 eiπν iR2eiπν (2π)1/2

Γ(ν+1)
R−2(2π)1/2

Γ(−ν) −eiπν




(

ZI
out

ZI
in

)
,

where R = (ν + 1)(ν+1/2)/2e−(ν+1/2)/2.



When expanding to higher WKB orders, the S matrix has
the same general form, though with modified expression for
R, which still depends only on ν.

Note that for a BH ZIII
in = 0, due to the QNM b.c. ZI

in = 0.
Both these conditions are satisfied only if Γ(−ν) =∞, and,
consequently, ν must be an integer.

This gives us the complex QNMs labelled by an overtone
number ν at the first WKB order. Later this approach was
extended to the third and sixth order WKB.



In addition to solving the QNM problem, the S-matrix
allows us to solve the standard scattering problem, which
describes tunneling of waves and particles through the
potential barrier of a BH. One can easily check that for real
Q(x) (for real energy of the incident wave and spherically
symmetric backgrounds)

S∗11 = S22, S12 = S∗21, |S21|2 − |S11|2 = 1

and the transmission coefficient is

T =
|ZIII

out |2

|ZI
in|2

= S−1
21 .

The reflection coefficient is R = 1− T .



QNMs of mini-BHs

To conclude I’d like to mention that the QN spectra of BHs
has attracted considerable interest in the following extra
dimensional models:

• The large extra dimensions scenario, which allows for
the size of the extra dimensions to be of a macroscopic
order. When the size of the BH is much smaller than the
size of the extra dimensions, the BH can be considered as
effectively living in a D-dimensional world and, thereby,
approximated by a solution of higher-dimensional Einstein
equations. The simplest example of such a solution is the
Tangherlini metric.



• Randall-Sundrum models assumed that our world is a
brane in higher-dimensional warped AdS space-time. This
implies a quick decay of the fields outside the brane. The
warp factor, which is the parameter of the theory, can be
set up in order to obtain a large size (of the order of TeV )
or, if one wishes, a small size of the extra dimensions.

• Brane-localized fields: When the size of extra
dimensions is larger than the size of the BH, one can
consider the model where the SM particles are restricted
to live on a (3 + 1)-brane, while gravitons propagate in the
bulk. When considering the evolution of the SM fields in
the background of a mini BH, one can think that the mini
BH effectively behaves similar to a higher-dimensional one
projected onto the brane.


