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I. Summary of the Phenomenology

TABLE OF ELEMENTARY PARTICLES

QUANTA OF RADIATION

Strong Interactions Eight gluons

Electromagnetic Interactions Photon (γ)

Weak Interactions Bosons W+ , W− , Z 0

Gravitational Interactions Graviton (?)

MATTER PARTICLES

Leptons Quarks

1st Family νe , e− ua , da , a = 1, 2, 3

2nd Family νµ , µ− ca , sa , a = 1, 2, 3

3rd Family ντ , τ− ta , ba , a = 1, 2, 3

HIGGS BOSON (?)

Table: This Table shows our present ideas on the structure of matter.
Quarks and gluons do not exist as free particles and the graviton and the
Higgs boson have not yet been observed.
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Remarks

◮ All interactions are produced by the exchange of virtual
quanta. For the strong, e.m. and weak interactions they are
vector (spin-one) fields, while the graviton is assumed to be a
tensor, spin-two field.

◮ The constituents of matter appear to be all spin one-half
particles. They are divided into quarks, which are hadrons,
and “leptons” which have no strong interactions.

◮ Each quark species appears under three forms, often called
“colours” (no relation with the ordinary sense of the word).

◮ Quarks and gluons do not appear as free particles. They form
a large number of bound states, the hadrons.

◮ Quarks and leptons seem to fall into three distinct groups, or
“families”. Why?

◮ The sum of all electric charges inside any family is equal to
zero.



Electromagnetic Interactions

Li ∼ − eAµ(x)j
µ(x)

For the matter fields the current is:
(A bit more complicated for the charged vector fields)

jµ(x) =
∑

i qi ψ̄i (x)γ
µψi (x)

• Vector current

• Conservation of P , C , and T

• Absence of more complex terms, such as:

jµ(x)jµ(x), ∂A(x)ψ̄(x)...ψ(x), ....



• All these terms, as well as all others we can write, share one
common property:

• In a four-dimensional space-time, their canonical dimension is
larger than four.

• The resulting quantum field theory is non-renormalisable

• For some reason, Nature does not like Non-Renormalisable
theories.



Weak Interactions
• Mediated by massive vector bosons

Li ∼ Vµ(x)j
µ(x) ; Vµ : W+

µ , W−
µ , Z 0

µ

For the matter part the current is again bi-linear in the fermion
fields: ψ̄...ψ

• The charged current
(i) Contains only left-handed fermion fields:

jµ ∼ ψ̄LγµψL ∼ ψ̄γµ(1 + γ5)ψ

(ii) It is non-diagonal in the quark flavour space.

• The neutral current
(i) Contains both left- and right-handed fermion fields:

jµ ∼ CLψ̄LγµψL + CR ψ̄RγµψR

(ii) It is diagonal in the quark flavour space.

• Violation of P , C , and T
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SYMMETRIES

◮ In Physics a Symmetry follows from the assumption that a
certain quantity is not measurable.

◮ The equations of motion should not depend on this quantity
⇒ Invariance ⇒ Conservation law

◮ Space-time Symmetries
Translations, Rotations, Lorentz boosts, Inversions

◮ Internal Symmetries The phase of the wave function, Field
redefinitions



Ex. SPACE TRANSLATIONS

x

y

z

x’

y’

z’

A

a

x x + a

a

A’

If A is the trajectory of a free particle in the (x,y,z) system, its
image, A’, is also a possible trajectory of a free particle.



A first abstraction: Local Symmetries

Einstein 1918

Local space translations

�
�
�
�

x

y

z

x’

y’

z’

A

a

x x + a (x,t)

A’’

A” IS NOT a possible trajectory of a free particle.
Are there forces for which A” is the trajectory?
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physical meaning, so we expect a mathematical answer with
no interest for Physics.



◮ Local space translations

The question is purely geometrical without any obvious
physical meaning, so we expect a mathematical answer with
no interest for Physics.

◮ Surprise: The Dynamics which is invariant under local
translations is

GENERAL RELATIVITY

The resulting force is Gravity
One of the four fundamental forces.



A second abstraction: Internal Symmetries

◮ The phase of the wave function in Quantum Mechanics

Ψ(x) → e iθΨ(x)

Leaves the Scrödinger, or the Dirac, equation, as well as the
normalisation condition, invariant



A second abstraction: Internal Symmetries

◮ The phase of the wave function in Quantum Mechanics

Ψ(x) → e iθΨ(x)

Leaves the Scrödinger, or the Dirac, equation, as well as the
normalisation condition, invariant

◮ Isospin Heisenberg 1932

N(x) =

(

p(x)
n(x)

)

→ e i~τ ·
~θN(x)
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A second abstraction: Internal Symmetries

◮ Heisenberg’s iso-space is three dimensional, isomorphic to our
physical space.

◮ With the discovery of new internal symmetries the idea was
generalised to multi-dimensional internal spaces.

◮ The space of Physics became an abstract mathematical
concept with non-trivial geometrical and topological
properties.

◮ Only a part of it, the three-dimensional Euclidean space, is
directly accessible to our senses.
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Local Internal Symmetries
The gravitational forces are not the only ones which have a geometrical origin

◮ The example of the quantum mechanical phase:

Ψ(x) → e iθΨ(x) with θ → θ(x)

◮ ∂µe
iθ(x)Ψ(x) = e iθ(x)∂µΨ(x) + ie iθ(x)Ψ(x)∂µθ(x)

◮ Introduce Aµ(x) such that

Aµ(x) → Aµ(x)− 1
e
∂µθ(x)

◮ Then
∂µ → Dµ = ∂µ − ieAµ(x) ; Dµe

iθ(x)Ψ(x) = e iθ(x)DµΨ(x)

◮ Replacing ∂µ by Dµ turns any equation which was invariant
under the global phase transformation, invariant under the
local (gauge) one.
Fock 1926
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Local Internal Symmetries

◮ The introduction of the covariant derivative:

The free Scrödinger, or Dirac, equation ⇒
The same equation in the presence of an external
electromagnetic field

◮ To obtain the fully interacting theory:

Add the energy of the new vector field:

∼ F 2
µν = (∂µAν − ∂νAµ)

2

The resulting interaction is:

QUANTUM ELECTRODYNAMICS
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Think of a field theory formulated on a space-time lattice:

Ψ(x) ⇒ Ψi ; ∂Ψ(x) ⇒ (Ψi −Ψi+1)

Ψ(x) → e iθΨ(x) ⇒ Ψi → e iθΨi

◮ For global transformations, i.e. constant θ:

Ψ̄iΨi as well as Ψ̄iΨi+1 remain invariant

◮ For gauge transformations, i.e. θ(x) ⇒ θi , the term:

Ψ̄iΨi+1 transforms into e−iθi Ψ̄iΨi+1e
iθi+1

◮ We need a field to connect the points i and i + 1.

Ui ,i+1 which transforms as Ui ,i+1 → e iθiUi ,i+1e
−iθi+1

The term Ψ̄iUi ,i+1Ψi+1 is now invariant. In the continuum
limit the field U becomes the gauge potential A

◮ The matter fields live on the lattice points.

◮ The gauge potentials live on the oriented lattice links
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Non-Abelian, Local, Internal Symmetries
(Klein 1937, Pauli 1953, Yang and Mills 1954)

◮ Ψ =







ψ1

...
ψr






; Ψ(x) → U(ω)Ψ(x) ; ω ∈ G

◮ For infinitesimal transformations:

Ψ(x) → e iΘΨ ; Θ =
∑m

a=1 θ
aT a ;

[

T a,T b
]

= if abcT c

◮ L(Ψ, ∂Ψ) is assumed to be invariant under these global
transformations

◮ As was done for the Abelian case, we wish to find a new L,
invariant under the corresponding gauge transformations in
which the θa’s are arbitrary functions of x .

◮ In a qualitative sense, we look for a theory invariant under G∞
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◮ We need a gauge field, the analogue of the electromagnetic
field, to transport the information from one point to the next.
Since we can perform m independent transformations, the
number of generators in the Lie algebra of G , we need m
gauge fields Aa

µ(x), a = 1, ...,m. It is easy to show that they
belong to the adjoint representation of G .

Aµ(x) =
∑m

a=1 A
a
µ(x)T

a

◮ We construct the covariant derivative: Dµ = ∂µ + igAµ
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Non-Abelian, Local, Internal Symmetries

◮ We need a gauge field, the analogue of the electromagnetic
field, to transport the information from one point to the next.
Since we can perform m independent transformations, the
number of generators in the Lie algebra of G , we need m
gauge fields Aa

µ(x), a = 1, ...,m. It is easy to show that they
belong to the adjoint representation of G .

Aµ(x) =
∑m

a=1 A
a
µ(x)T

a

◮ We construct the covariant derivative: Dµ = ∂µ + igAµ

◮ It satisfies Dµe
iΘ(x)Ψ(x) = e iΘ(x)DµΨ(x)

provided Aµ(x) → e iΘ(x)Aµ(x)e
−iΘ(x) + i

g

(

∂µe
iΘ(x)

)

e−iΘ(x)

◮ If L(Ψ, ∂Ψ) is invariant under the global G

L(Ψ,DΨ) is invariant under the gauge G
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Non-Abelian, Local, Internal Symmetries

◮ L(Ψ,DΨ) describes the interaction of the fields Ψ in an
external Yang-Mills field

◮ In order to obtain the fully interacting theory, we must include
the degrees of freedom of the gauge fields by adding to the
Lagrangian density a gauge invariant kinetic term.

Linv = −1
2TrGµνGµν + L(Ψ,DΨ)

Gµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ]

Gµν(x) → e iθ
a(x)ta Gµν(x) e−iθa(x)ta
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Non-Abelian, Local, Internal Symmetries

Remarks:

◮ No terms proportional to AµA
µ. ⇒ the gauge fields describe

massless particles. Useless for Physics??

◮ Yang-Mills fields alone are coupled. The em field is not.

◮ The coupling constant g appears in the covariant derivative of
the fields Ψ. They are all coupled with the same strength.

◮ Extension to G = G1 × ...×Gn semi-simple. ⇒ n independent
coupling constants.
Gell-Mann and Glashow, 1960

◮ If one of the factors is Abelian ⇒ no charge quantisation.
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Spontaneous Symmetry Breaking (SSB)

◮ An infinite system may exhibit the phenomenon of phase
transitions. It often implies a reduction in the symmetry of
the ground state.

◮ For a field theory, in many cases, we encounter at least two
phases:

(i) The unbroken, or, the Wigner phase: A symmetry is
manifest in the spectrum of the theory whose excitations form
irreducible representations of the symmetry group. For a
gauge theory the vector gauge bosons are massless and belong
to the adjoint representation.

(ii) The spontaneously broken phase: Part of the
symmetry is hidden from the spectrum. For a gauge theory,
some of the gauge bosons become massive.



SSB: Global Symmetries

An example from Classical Mechanics

x

y

z

F

IE d4X
dz4

+ F d2X
dz2

= 0 ; IE d4Y
dz4

+ F d2Y
dz2

= 0

X = X ′′ = Y = Y ′′ = 0 for z = 0 and z = l
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SSB: Global Symmetries

An example from Classical Mechanics

◮ A symmetric solution always exists: X = Y = 0

◮ For F ≥ Fcr =
π2EI
l2

asymmetric solutions appear:

X = C sinkz ; kl = nπ ; n = 1, ... ; k2 = F/EI

They correspond to lower energy.

◮ What happened to the original symmetry?

◮ The ground state is degenerate.



SSB: Global Symmetries

A field theory example

• L1 = (∂µφ)(∂
µφ∗)−M2φφ∗ − λ(φφ∗)2

Invariant under U(1) global transformations: φ(x) → e iθφ(x)

• The Hamiltonian is given by:

H1 = (∂0φ)(∂0φ
∗) + (∂iφ)(∂iφ

∗) + V (φ)

V (φ) = M2φφ∗ + λ(φφ∗)2

• The symmetric solution is φ(x) = 0.

• The minimum energy configuration corresponds to:

φ(x) = constant = φ such that V (φ) is minimum, solution of:

V ′ = 0
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A field theory example

The potential V (φ) with λ > 0 and M2 ≥ 0.

The only solution is the symmetric one φ = 0.



SSB: Global Symmetries
A field theory example

The potential V (φ) with λ > 0 and M2 < 0.

φ = 0 is a local maximum. An entire circle of minima at the
complex φ-plane with radius v = (−M2/2λ)1/2. Any point on it
corresponds to a spontaneous breaking of the U(1) symmetry.
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SSB: Global Symmetries

A field theory example

◮ Conclusion: M2 = 0 is a critical point.

For M2 > 0 the symmetric solution is stable.

For M2 < 0 spontaneous symmetry breaking occurs.

◮ In order to reach the stable solution we translate the field φ.
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SSB: Global Symmetries

A field theory example

◮ Conclusion: M2 = 0 is a critical point.

For M2 > 0 the symmetric solution is stable.

For M2 < 0 spontaneous symmetry breaking occurs.

◮ In order to reach the stable solution we translate the field φ.

φ(x) = 1√
2
[v + ψ(x) + iχ(x)]

L1(φ) → L2(ψ,χ) =
1

2
(∂µψ)

2 +
1

2
(∂µχ)

2 − 1

2
(2λv2)ψ2

− λvψ(ψ2 + χ2)− λ

4
(ψ2 + χ2)2

◮ χ is massless (Goldstone mode).
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◮ L2 is still invariant.

δψ = −θχ ; δχ = θψ + θv

We still have a conserved current:

jµ ∼ ψ∂µχ− χ∂µψ + v∂µχ

∂µjµ(x) = 0

It is the minimum energy configuration which is not invariant.



SSB: Global Symmetries

A field theory example

◮ L2 is still invariant.

δψ = −θχ ; δχ = θψ + θv

We still have a conserved current:

jµ ∼ ψ∂µχ− χ∂µψ + v∂µχ

∂µjµ(x) = 0

It is the minimum energy configuration which is not invariant.

◮ Goldstone Theorem: Spontaneous breaking of a continuous
symmetry ⇒ A massless particle
(Needs Lorentz invariance and positivity)



SSB: Gauge Symmetries: I. Abelian

◮ Consider the gauge theory extension of the previous model:

L1 = −1
4F

2
µν + |(∂µ + ieAµ)φ|2 −M2φφ∗ − λ(φφ∗)2

L1 is invariant under the gauge transformation:

φ(x) → e iθ(x)φ(x) ; Aµ → Aµ − 1
e
∂µθ(x)



SSB: Gauge Symmetries: I. Abelian

◮ Consider the gauge theory extension of the previous model:

L1 = −1
4F

2
µν + |(∂µ + ieAµ)φ|2 −M2φφ∗ − λ(φφ∗)2

L1 is invariant under the gauge transformation:

φ(x) → e iθ(x)φ(x) ; Aµ → Aµ − 1
e
∂µθ(x)

◮ Same analysis for λ > 0 and M2 < 0 yields:

L1 → L2 = −1

4
F 2
µν +

e2v2

2
A2
µ + evAµ∂

µχ

+
1

2
(∂µψ)

2 +
1

2
(∂µχ)

2 − 1

2
(2λv2)ψ2 + ...



SSB: Gauge Symmetries: I. Abelian

◮ L2 is invariant under the gauge transformation:

ψ(x) → cosθ(x)[ψ(x) + v ]− sinθ(x)χ(x)− v

χ(x) → cosθ(x)χ(x) + sinθ(x)[ψ(x) + v ]

Aµ → Aµ − 1

e
∂µθ(x)
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SSB: Gauge Symmetries: I. Abelian

◮ L2 is invariant under the gauge transformation:

ψ(x) → cosθ(x)[ψ(x) + v ]− sinθ(x)χ(x)− v

χ(x) → cosθ(x)χ(x) + sinθ(x)[ψ(x) + v ]

Aµ → Aµ − 1

e
∂µθ(x)

◮ L2 contains a term proportional to A2. A massive photon??

◮ Degrees of freedom:

L1 : 2+2=4

L2 : 2+3=5 ??

Notice the term evAµ∂
µχ



SSB: Gauge Symmetries: I. Abelian

In order to make this counting easier, let us choose a different
parametrisation:

φ(x) = 1√
2
[v + ρ(x)]e iζ(x)/v ; Aµ(x) = Bµ(x)− 1

ev
∂µζ(x)

A gauge transformation: ζ(x) → ζ(x) + vθ(x)

L1 → L3 = −1

4
B2
µν +

e2v2

2
B2
µ +

1

2
(∂µρ)

2 − 1

2
(2λv2)ρ2

− λ

4
ρ4 +

1

2
e2B2

µ(2vρ+ ρ2)

Bµν = ∂µBν∂νBµ

The ζ field has disappeared!!



SSB: Gauge Symmetries: I. Abelian

◮ L3 describes the interaction of:
• A massive spin-one field : Bµ(x) → 3 degrees of freedom
• A massive, real, scalar field : ρ(x) → 1 degree of freedom

There is no more any gauge invariance left. No massless
particles. The ζ degree of freedom gave rise to the
longitudinal component of the vector boson.
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SSB: Gauge Symmetries: I. Abelian

◮ L3 describes the interaction of:
• A massive spin-one field : Bµ(x) → 3 degrees of freedom
• A massive, real, scalar field : ρ(x) → 1 degree of freedom

There is no more any gauge invariance left. No massless
particles. The ζ degree of freedom gave rise to the
longitudinal component of the vector boson.

◮ Conclusion: We obtained three different Lagrangian
densities: L1, L2, L3.

◮ They all describe the same Physics.

◮ But not necessarily in perturbation theory!
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• It is gauge invariant.

• In the quadratic part it has an imaginary mass → not
suitable for perturbation expansion.
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SSB: Gauge Symmetries: I. Abelian

◮ L1 :

• It is gauge invariant.

• In the quadratic part it has an imaginary mass → not
suitable for perturbation expansion.

◮ L2 :

• It is gauge invariant.

• It has redundant degrees of freedom.

• It has a correct quadratic part for a perturbation expansion.

◮ L3 :

• No gauge invariance. Only physical degrees of freedom.

• Non-renormalisable by power counting.

• It can be obtained from L2 by a suitable choice of gauge.



SSB: Gauge Symmetries: II. Non Abelian

• Assume a gauge Lie-group G with m generators → m massless
gauge bosons.

• Add a multiplet of scalar fields φi belonging to an n-dim. repr.

L = −1
4Tr(FµνF

µν) + (DµΦ)
†DµΦ− V (Φ)

Dµφi = ∂µφi − ig (a)T a
ijA

a
µφj

• Choose the parameters in V such that the minimum is not at
Φ = 0 but rather at Φ = v .

• The m generators of G can be separated into two classes: h
generators which annihilate v and form the Lie algebra of a
subgroup H and the m − h others represented, in the
representation of Φ, by matrices T a, such that T av 6= 0.

• Any vector in the orbit of v , i.e. of the form e iw
aT a

v , is an
equivalent minimum of the potential.



SSB: Gauge Symmetries: II. Non Abelian

• Φ → Φ+ v

• Decompose Φ into components along the orbit of v and
orthogonal to it:

Φ(x) = i
∑m−h

a=1
χa(x)T av

|T av | +
∑n−m+h

b=1 ψb(x)ub + v

The ub’s are orthogonal to all the T av ’s. The corresponding
generators span the coset space G/H.

• The fields χa will give the longitudinal components of the m − h
gauge bosons.

• The fields ψb will remain physical.

• There is always at least one field ψ.



SSB: Gauge Symmetries. Conclusions:

The Brout-Englert-Higgs Mechanism

• The vector bosons corresponding to spontaneously broken
generators of a gauge group become massive.

• The corresponding Goldstone bosons decouple and disappear
from the physical spectrum.

• Their degrees of freedom become the longitudinal components of
the vector bosons.

• Gauge bosons corresponding to unbroken generators remain
massless.

• There is always at least one physical, massive, scalar particle.



Model Building: A five step programme

1) Choose a gauge group G .

2) Choose the fields of the “elementary” particles and assign them
to representations of G . Include scalar fields to allow for the Higgs
mechanism.

3) Write the most general renormalisable Lagrangian invariant
under G . At this stage gauge invariance is still exact and all gauge
vector bosons are massless.

4) Choose the parameters of the Higgs potential so that
spontaneous symmetry breaking occurs.

5) Translate the scalars and rewrite the Lagrangian in terms of the
translated fields. Choose a suitable gauge and quantise the theory.

A remark: Gauge theories provide only the general framework, not
a detailed model. The latter will depend on the particular choices
made in steps 1) and 2).



The EW Standard Model
A. The lepton world

◮ Step 1. We have four vector bosons: W+, W−, Z 0 and γ ⇒
We need a group with four generators. ⇒
G = U(2) ∼ SU(2)× U(1)

Quantum number assignment: Q = T3 +
1
2Y



The EW Standard Model
A. The lepton world

◮ Step 1. We have four vector bosons: W+, W−, Z 0 and γ ⇒
We need a group with four generators. ⇒
G = U(2) ∼ SU(2)× U(1)

Quantum number assignment: Q = T3 +
1
2Y

◮ Step 2. Three families ⇒ Simplest solution: Three copies

Ψi
L(x) =

1

2
(1 + γ5)

(

νi(x)
ℓ−i (x)

)

; i = 1, 2, 3

νiR(x) =
1

2
(1− γ5)νi (x) (?) ; ℓ−

iR
(x) =

1

2
(1− γ5)ℓ

−
i (x)

Ψi
L(x) → e i~τ

~θ(x)Ψi
L(x) ; Ri(x) → Ri(x)

Y (Ψi
L) = −1 ; Y (Ri ) = −2



The EW Standard Model

Higgs choice:

Φ =

(

φ+

φ0

)

; Φ(x) → e i~τ
~θ(x)Φ(x) ; Y (Φ) = 1

◮ Step 3. Assume conservation of lepton numbers:

L = −1

4
~Wµν · ~W µν − 1

4
BµνB

µν + |DµΦ|2 − V (Φ)

+
3
∑

i=1

[

Ψ̄i
LiD/Ψ

i
L + R̄i iD/Ri − Gi(Ψ̄

i
LRiΦ+ h.c .)

]

~Wµν = ∂µ ~Wν − ∂ν ~Wµ + g ~Wµ × ~Wν Bµν = ∂µBν − ∂νBµ

DµΨ
i
L =

(

∂µ − ig ~τ
2 · ~Wµ + i g

′

2 Bµ

)

Ψi
L ; DµRi = (∂µ + ig ′Bµ)Ri

DµΦ =
(

∂µ − ig ~τ
2 · ~Wµ − i g

′

2 Bµ

)

Φ



The EW Standard Model

V (Φ) = µ2Φ†Φ+ λ(Φ†Φ)2

Gauge bosons and leptons are massless

◮ Step 4. We choose µ2 < 0 → v2 = −µ2/λ
We put the breaking along the real part of φ0



The EW Standard Model

V (Φ) = µ2Φ†Φ+ λ(Φ†Φ)2

Gauge bosons and leptons are massless

◮ Step 4. We choose µ2 < 0 → v2 = −µ2/λ
We put the breaking along the real part of φ0

◮ Step 5. Translate the Higgs field:

Φ → Φ+
1√
2

(

0
v

)

v2 = −µ
2

λ

This transforms the Lagrangian and generates new terms.
Some of them:



◮ Fermion mass terms:

me =
1√
2
Gev mµ =

1√
2
Gµv mτ =

1√
2
Gτv



◮ Fermion mass terms:

me =
1√
2
Gev mµ =

1√
2
Gµv mτ =

1√
2
Gτv

◮ Gauge boson mass terms:

1

8
v2[g2(W 1

µW
1µ +W 2

µW
2µ) + (g ′Bµ − gW 3

µ )
2]

W±
µ =

W 1
µ
∓iW 2

µ√
2

; mW = vg
2

After diagonalisation, we obtain the neutral bosons:

Zµ = sinθWBµ − cosθWW 3
µ ; mZ =

v(g2 + g ′2)1/2

2
=

mW

cosθW

Aµ = cosθWBµ + sinθWW 3
µ ; mA = 0

g ′/g = tanθW



◮ Fermion mass terms:

me =
1√
2
Gev mµ =

1√
2
Gµv mτ =

1√
2
Gτv

◮ Gauge boson mass terms:

1

8
v2[g2(W 1

µW
1µ +W 2

µW
2µ) + (g ′Bµ − gW 3

µ )
2]

W±
µ =

W 1
µ
∓iW 2

µ√
2

; mW = vg
2

After diagonalisation, we obtain the neutral bosons:

Zµ = sinθWBµ − cosθWW 3
µ ; mZ =

v(g2 + g ′2)1/2

2
=

mW

cosθW

Aµ = cosθWBµ + sinθWW 3
µ ; mA = 0

g ′/g = tanθW

◮ Physical Higgs mass: mH =
√

−2µ2 =
√
2λv2



Extension to hadrons

• The lepton-hadron universality suggests to use also doublets for
the left-handed quarks and singlets for the right-handed ones.

• New features: Individual quantum numbers are not separately
conserved. All quarks have non-vanishing masses.

• A näıve assignment:

Q i
L(x) =

1

2
(1 + γ5)

(

U i(x)
D i(x)

)

; U i
R(x) ; D i

R(x)

U i = u, c , t ; D i = d , s, b i = 1, 2, 3

Y (Q i
L) =

1
3 ; Y (U i

R) =
4
3 ; Y (D i

R) = −2
3

• The presence of the second right-hand singlet implies a second
Yukawa term:

LYuk = Gd (Q̄LDRΦ+ h.c .) + Gu(Q̄LURΦ̃ + h.c .)



Extension to hadrons

• Had we only one family, this would have been the end of the
story! BUT...

• The correct Yukawa term is:

LYuk =
∑

i ,j

[

(Q̄ i
LG

ij
d
D j
R
Φ+ h.c .)

]

+
∑

i

[

G i
u(Q̄

i
LU

i
RΦ̃ + h.c .)

]

• After translation of the Higgs field:
Masses for the up quarks mu = G 1

u v , mc = G 2
u v and mt = G 3

u v .
A mass matrix for the down quarks G ij

d v .

• We prefer to work in a field space with diagonal masses:
D̃ i = U ijD j such that U†GdU =diag(md ,ms ,mb).

• For two families, with θ=The Cabibbo angle:

C =

(

cosθ sinθ
−sinθ cosθ

)



Extension to hadrons

• For three families:

KM =





c1 s1c3 s1s3
−s1c3 c1c2c3 − s2s3e

iδ c1c2s3 + s2c3e
iδ

−s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3e

iδ







The Standard Model: The full Lagrangian

L = −1

4
~Wµν · ~W µν − 1

4
BµνB

µν + |DµΦ|2 − V (Φ)

+

3
∑

i=1

[

Ψ̄i
LiD/Ψ

i
L + R̄i iD/Ri − Gi(Ψ̄

i
LRiΦ+ h.c .)

+ Q̄ i
LiD/Q

i
L + Ū i

R iD/U
i
R + D̄ i

R iD/D
i
R + G i

u(Q̄
i
LU

i
RΦ̃ + h.c .)

]

+

3
∑

i ,j=1

[

(Q̄ i
LG

ij
dD

j
RΦ+ h.c .)

]

DµQ
i
L =

(

∂µ − ig
~τ

2
· ~Wµ − i

g ′

6
Bµ

)

Q i
L

DµU
i
R =

(

∂µ − i
2g ′

3
Bµ

)

U i
R

DµD
i
R =

(

∂µ + i
g ′

3
Bµ

)

D i
R



The Standard Model: Arbitrary parameters

• The two gauge coupling constants g and g ′.

• The two parameters of the Higgs potential λ and µ2.

• Three Yukawa coupling constants for the three lepton families,
Ge,µ,τ . (mν = 0).

• Six Yukawa coupling constants for the three quark families,
G u,c,t
u , and G d,s,b

d .

• Four parameters of the KM matrix, the three angles and the
phase δ.

• All but two come from the Higgs system.



The Standard Model: The couplings

◮ The gauge boson-fermion couplings.

• The photon couplings

gg ′

(g2 + g ′2)1/2

[

ēγµe +

3
∑

a=1

(

2

3
ūaγµua − 1

3
d̄aγµda

)

+ ...

]

Aµ

e =
gg ′

(g2 + g ′2)1/2
= gsinθW = g ′cosθW

• The charged W couplings

g

2
√
2

(

ν̄eγ
µ(1 + γ5)e +

3
∑

a=1

ūaγµ(1 + γ5)d
a
KM + ...

)

W+
µ +h.c .

G√
2
=

g2

8m2
W

=
1

2v2



The Standard Model: The couplings

• The Z 0 couplings

−e

2

1

sinθW cosθW

[

ν̄Lγ
µνL + (sin2θW − cos2θW )ēLγ

µeL

+2sin2θW ēRγ
µeR + ...

]

Zµ

e

2

3
∑

a=1

[

(
1

3
tanθW − cotθW )ūaLγ

µuaL + (
1

3
tanθW + cotθW )d̄a

Lγ
µda

L

+
2

3
tanθW (2ūaRγ

µuaR − d̄a
Rγ

µda
R) + ...

]

Zµ

Remarks :
(i) The neutral current is diagonal in flavour space.
(ii) The axial part is ∼ [ūγµγ5u − d̄γµγ5d ]



The Standard Model: The couplings

◮ The gauge boson self-couplings

• −1
4
~Wµν · ~W µν ⇒

− ig(sinθWAµ − cosθWZµ)(W ν−W+
µν −W ν+W−

µν)

− ig(sinθWFµν − cosθWZµν)W−
µ W+

ν

− g2(sinθWAµ − cosθWZµ)2W+
ν W ν−

+ g2(sinθWAµ − cosθWZµ)(sinθWAν − cosθWZ ν)W+
µ W−

ν

− g2

2
(W+

µ W µ−)2 +
g2

2
(W+

µ W−
ν )2

Vµν = ∂µVν − ∂νVµ,

• For a charged, massive W , the magnetic moment µ and the
quadrupole moment Q are given by:

µ = (1+κ)e
2mW

Q = − eκ
m2

W

• An SU(2) prediction: κ = 1



The Standard Model: The couplings

◮ The Higgs fermion couplings

Proportional to the fermion mass!



The Standard Model: The couplings

◮ The Higgs fermion couplings

Proportional to the fermion mass!

◮ The Higgs gauge boson couplings

1
4(v + φ)2

[

g2W+
µ W−µ + (g2 + g ′2)ZµZ

µ
]
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◮ The Higgs self coupling

Given by λ = Gm2
H/
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unless the Higgs is found



The Standard Model: The couplings

◮ The Higgs fermion couplings

Proportional to the fermion mass!

◮ The Higgs gauge boson couplings

1
4(v + φ)2

[

g2W+
µ W−µ + (g2 + g ′2)ZµZ

µ
]

◮ The Higgs self coupling

Given by λ = Gm2
H/

√
2. Cannot be accurately measured

unless the Higgs is found

◮ The five-step programme is complete



The Standard Model and experiment



The Standard Model and experiment

◮ The Standard Model has 17 arbitrary parameters.

They are related to masses and coupling constants and should
be determined experimentally.

All but the Higgs mass (??) have been measured.
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The Standard Model and experiment

◮ The Standard Model has 17 arbitrary parameters.

They are related to masses and coupling constants and should
be determined experimentally.

All but the Higgs mass (??) have been measured.

◮ The Model gives a large number of predictions.

◮ THE STANDARD MODEL HAS BEEN ENORMOUSLY

SUCCESSFUL



0 1 2 3

∆αhad(mZ)∆α(5) 0.02761 ± 0.00036 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1873

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4965

σhad [nb]σ0 41.540 ± 0.037 41.481

RlRl 20.767 ± 0.025 20.739

AfbA0,l 0.01714 ± 0.00095 0.01642

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480

RbRb 0.21638 ± 0.00066 0.21566

RcRc 0.1720 ± 0.0030 0.1723

AfbA0,b 0.0997 ± 0.0016 0.1037

AfbA0,c 0.0706 ± 0.0035 0.0742

AbAb 0.925 ± 0.020 0.935

AcAc 0.670 ± 0.026 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.425 ± 0.034 80.398

ΓW [GeV]ΓW [GeV] 2.133 ± 0.069 2.094

mt [GeV]mt [GeV] 178.0 ± 4.3 178.1

Mesure AjustementObservable
O     - Omes. ajust.

mes.σ







ǫ1 =
3GFm

2
t

8
√
2π2

− 3GFm
2
W

4
√
2π2

tan2 θW ln
mH

mZ

+ ... (1)

ǫ3 =
GFm

2
W

12
√
2π2

ln
mH

mZ

− GFm
2
W

6
√
2π2

ln
mt

mZ

+ ... (2)
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The Standard Model and experiment
The precision of the measurements often led to successful predictions of new

Physics.

◮ The discovery of weak neutral currents by Gargamelle in 1972

νµ + e− → νµ + e− ; νµ + N → νµ + X

Both, their strength and their properties were predicted by the
Model.

◮ The discovery of charmed particles at SLAC in 1974

Their presence was essential to ensure the absence of
strangeness changing neutral currents, ex. K 0 → µ+ + µ−

Their characteristic property is to decay predominantly in
strange particles.

◮ A necessary condition for the consistency of the Model is that
∑

i Qi = 0 inside each family.

When the τ lepton was discovered the b and t quarks were
predicted with the right electric charges.
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The Standard Model and experiment

◮ The discovery of the W and Z bosons at CERN in 1983

The characteristic relation of the Standard Model with an
isodoublet Higgs mechanism mZ = mW /cosθW is checked
with very high accuracy (including radiative corrections).

◮ The t-quark was seen at LEP through its effects in radiative
corrections before its actual discovery at Fermilab.

◮ THE STANDARD MODEL HAS BEEN ENORMOUSLY

SUCCESSFUL

◮ RENORMALISED PERTURBATION THEORY HAS

BEEN ENORMOUSLY SUCCESSFUL

◮ WHY?



The Standard Model and experiment

IF THIS SUCCESS PERSISTS, NEW PHYSICS IS

PREDICTED FOR LHC


