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Toy data and code at 

http://www.hep.fsu.edu/~harry/ESHEP12 

 topdiscovery.tar   (already there) 

 contactinteractions.tar 

just download and unpack 
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The Frequentist Principle (Neyman, 1937) 

 Construct statements such that a fraction f  !  p of them 

will be true over an (infinite) ensemble of statements.  

  f is called the coverage probability 

  p is called the confidence level (CL). 
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Example: Top Quark Discovery (1995), D0 Results 

 D  = 17 events 

 B  = 3.8 ± 0.6 events 

where 

 B  = Q / k 

 !B  = "Q / k  
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Q = (B /!B)
2
= (3.8 / 0.6)

2
= 41.11

k = B /!B
2
= 3.8 / 0.6

2
= 10.56

p(D | s, b) = Poisson(D, s + b) Gamma(k, b,Q +1)

=
(s + b)

D
e
!(s+b)

D!

(bk)
Q
e
!bk

"(Q +1)
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In order to make an inference about the signal, s, the  

2-parameter problem, 

must be reduced to a problem involving s only by getting rid 

of all nuisance parameters, such as b. 

In principle, this must be done while respecting the 

frequentist principle: coverage prob.  ! confidence level.  

       In general, this is very difficult to do exactly. 

   

p(D | s, b) =
(s + b)

D
e
!(s+b)

D!

(bk)
Q
e
!bk

"(Q +1)
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In practice, we replace all nuisance parameters by their 

conditional maximum likelihood estimates (CMLE), which 

 yields a function called the profile likelihood, pPL(D | s). 

In the top quark discovery example, we find an estimate of b 

as a function of s 

Then, in the likelihood p(D|s, b), b is replaced with its 

estimate.  

This is an approximation because the likelihood principle is 

not guaranteed to be satisfied exactly 

   

b̂ = f (s)
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Wilks’ Theorem (1938)  

If certain conditions are met, and pmax is the value of the 

likelihood p(D|s, b) at its maximum, the quantity 

has a density that is asymptotically #2. Therefore, by setting 

y(s) = 1 and solving for s, we can compute approximate 

68% confidence intervals.   

This is what Minuit (now TMinuit) has be doing for 40 years! 

y(s) = !2 ln
p
PL
(D | s)

p
max



The CMLE of b is 

with  

 s = D – B 

 b = B   

the mode (peak) of the 

likelihood 

b̂(s) =
g + g

2
+ 4(1+ k)Qs

2(1+ k)

g = D +Q ! (1+ k)s

10 



By solving 

for s, we can make  

the statement 

@ 68% CL   

s ![9.4, 17.7]
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Exercise 6: Show this 

!2 ln
p
PL
(17 | s)

p
max

= 1
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p(x | H
0
)

x x
0

Fisher’s Approach: Null hypothesis (H0), background-only 

p-value ! p(x | H0 )dx
x0

"

#

The null hypothesis is 

rejected if the p-value  

is judged to be small  

enough. 

 Note: this can only be calculated if p(x|H0) is known 
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p(D | H
0
) = Poisson(D | B)

Background, B = 3.8 events (ignoring uncertainty) 

p-value = Poisson(D | 3.8)
D=17

!

" = 5.7 #10$7

D = 17

D is observed count 

This is equivalent to 4.9 " 
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p(x | H
0
)

p(x | H
1
)

x

 

x
!

! = p(x | H
0
)dx

x!

"

#

Alternative hypothesis 

significance of test 

A fixed significance " is chosen  

before data are analyzed.  

Neyman argued  

forcefully that it is  

necessary to  

consider  

alternative  

hypotheses  

H1 

Neyman’s Approach: Null hypothesis (H0) + alternative (H1)  
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x

 

x
!

In Neyman’s approach, 

hypothesis tests are 

a contest between 

significance and  

power, i.e., the probability  

to accept a true alternative. 

! = p(x | H
0
)dx

x!

"

# p = p(x | H
1
)dx

x!

"

#
power significance of test 

p(x | H
0
) p(x | H

1
)
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p

!

Power curve 

power vs. significance.  

Note: in general, no  

analysis is uniformly the  

most powerful. 

! = p(x | H
0
)dx

x!

"

# p = p(x | H
1
)dx

x!

"

#
power significance of test 

Blue is the more 

powerful below 

the cross-over point 

and green is the  

more powerful after.  





The moment generating function of a probability 

distribution P(k) is the average: 

For the binomial, this is  

which is useful for calculating moments 

e.g.,  

       M2 = (np)2 + np (1 – p)  
19 

Exercise 7: Show this 

Mr =
d
r
G

dx
r

x=0

= k
r

k=0

n

! Binomial(k,n, p)

G(x) ! e
x k

G(x) = e
x
p +1! p( )

n



Given that k events out of n pass a set of selection criteria, the 

MLE of the event selection efficiency is  

  p = k / n   

and the obvious estimate of p2 is   

  k2 / n2   

But 

is a biased estimate of p2. The best unbiased estimate of p2 is 

  k (k – 1) / [n (n – 1) ]  

but it is crazy: for a single success, p = 1/n, but p2 = 0! 
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Exercise 8: Show this  k
2
/ n

2
= p

2
+V / n

Exercise 9: Show this  





Definition: 

 A method is Bayesian if  

1.! it is based on the subjective interpretation of 

probability and 

2.! it uses Bayes’ theorem 

for all inferences. 

 D  observed data    

 #  parameter of interest 

 $  nuisance parameters  

 %  prior density 

   !

  

p(! ," | D) =
p(D |! ," )# (! ," )

p(D)
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Bayesian analysis is just applied probability theory.  

Consequently, the method for eliminating nuisance 

parameters is simply to integrate them out: 

a procedure called marginalization.  

This is simply a weighted average of the likelihood. 

  

p(! | D) = p(! ," | D)# d"

$ p(D |! ," )% (! ," ) d"#
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D0 Data (1995)   

  D = 17 events 

  B = 3.8 ± 0.6 estimated background events 

Parameters 

  b = expected (i.e., mean) background count 

  s = expected (i.e., mean) signal count 

  d = b + s 

Analysis goals: 

1.! Estimate (i.e., measure) the expected signal s 

2.! Quantify its significance 

3.! Drink champagne, if warranted! 
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Step  1: Construct a probability model for the observations 

then plug in the data 

   D = 17 events 

   B = 3.8 ± 0.6 background events 

           B = Q / k

      !B = "Q / k 

to arrive at the likelihood. 

   

p(D | s, b) =
e
!(s+b)

(s + b)
D

D!

e
!kb
(kb)

Q

"(Q +1)
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Q = (B /!B)
2
= 40.1

k = B /!B
2
= 10.6



Step 2: Write down Bayes’ theorem: 

and specify the prior: 

        

It is useful to compute the following marginal likelihood: 

sometimes referred to as the evidence for s. 

p(s, b | D) =
p(D, s, b)

p(D)
=
p(D | s, b)! (s, b)

p(D)
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! (s, b) = ! (b | s)! (s)

p(D | s) = p(D | s,b) ! (b | s)db"



The Prior: What do 

and 

represent? 

They encode what we know, or assume, about the mean 

background and signal in the absence of new observations. 

We shall assume that s and b are  non-negative. 

After a century of argument, the consensus today is that there 

is no unique way to represent such vague information. 
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! (b | s)

! (s)
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For now, we take %(b|s) = 1.  

We may now eliminate b from the problem: 

The symbol H1 denotes the background + signal hypothesis.  

Note: p(D|s = 0, H0) = p(D|H0) is the evidence for the 
background-only hypothesis, H0.  

  

p(D | s, H
1
) = p(

0

!

" D | s,b) # (b | s) d(kb)

=
k

1+ k

$
%&

'
()

Q+1

1

(1+ k)r

*(Q +1+ r)

*(Q +1)r!r=0

D

+ Poisson(D , r | s)
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p(17|s, H1) as a function of the expected signal s.  
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Background, B = 3.8 ± 0.6 events 

p-value = p(D | H0 )
D=17

!

" = 5.4 #10$6

D = 17

D is observed count 

This is equivalent to 4.4 " 

  

p(D | H
0
) =

k

1+ k

!
"#

$
%&

Q+1

1

(1+ k)D

'(Q +1+ D)

'(Q +1)D!
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Conceptually, Bayesian hypothesis testing proceeds in exactly 

the same way as any other Bayesian calculation: compute 

the posterior density 

and marginalize it with respect to all parameters except those 

indexing the hypotheses  

  

p(! ,", H | D) =
p(D |! ,", H )# (! ,", H )

p(D |! ,", H )# (! ,", H ) d! d"$$
H

%

and of course get your pHD! 



Bayesian Methods: Theory & Practice.  Harrison B. Prosper 34 

However, just like your PhD, it is usually more convenient, 

and instructive, to arrive at p(H|D) in stages.  

1.! Factorize the priors: !(", #, H) = !(#, # |H) !(H) 

2.! Then, for each hypothesis, H, compute the function 

3.! Then, compute the probability of each hypothesis, H 
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It is clear, however, that to compute p(H|D), it is necessary to 
specify the priors !(H).  

Unfortunately, consensus on these numbers is unlikely! 

Instead of asking for the probability of an hypothesis, p(H|D), 
we could compare probabilities: 

The ratio in the first bracket is called the Bayes factor, B10.  

  

p(H
1

| D)

p(H
0

| D)
=

p(D | H
1
)

p(D | H
0
)

!

"
#

$

%
&

' (H
1
)

' (H
0
)

!

"
#

$

%
&

Exercise 10: Compute B10 for the D0 results 



Frequentist Hypothesis Testing 

Two approaches:  

1)! reject null if p-value is judged to be too small  

2)! decide on a fixed threshold for rejection and reject 

null if threshold has been breached. 

Bayesian Approach  

1)! Model all uncertainty using probabilities and use 

Bayes’ theorem to make inferences. 

2)! Eliminate nuisance parameters through 

marginalization. 
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h!Hypothesis Tests 

h!It is necessary to specify priors for each of hypothesis.  

h!In particular, for our simple counting experiment, we 

need to specify the prior p(s) for the signal since it is 

part of the specification of the background+signal 

hypothesis. 

h!Unfortunately, doing so sensibly is hard! 

    More tomorrow!  


