IV.1. Hard Probes

Heavy Ion Collisions produce **auto-generated probes** at high $\sqrt{s_{NN}}$

$Q \gg T \geq 150 \text{MeV}$

Q: How sensitive are such ‘hard probes’?
Bjorken 1982: consider jet in p+p collision, hard parton interacts with underlying event → collisional energy loss

\[
\frac{dE_{\text{coll}}}{dL} \approx 10 \text{ GeV/fm}
\]

(error in estimate!)

Bjorken conjectured monojet phenomenon in proton-proton

But: radiative energy loss expected to dominate

\[
\Delta E_{\text{rad}} \approx \alpha_s \hat{q} L^2
\]

(4.1)

- p+p: \(L \approx 0.5 \text{ fm}, \ \Delta E_{\text{rad}} \approx 100 \text{ MeV} \) Negligible!
- A+A: \(L \approx 5 \text{ fm}, \ \Delta E_{\text{rad}} \approx 10 \text{ GeV} \) Monojet phenomenon!

Observed at RHIC
IV.3. Parton energy loss - a simple estimate

Medium characterized by transport coefficient:

\[\hat{q} \propto \frac{\mu^2}{\lambda} \propto n_{\text{density}} \]

- How much energy is lost?

 Phase accumulated in medium:
 \[\left\langle \frac{k_T^2 \Delta z}{2\omega} \right\rangle \approx \frac{\hat{q} L^2}{2\omega} = \frac{\omega_c}{\omega} \]

 Characteristic gluon energy

 Number of coherent scatterings:
 \[N_{\text{coh}} \propto \frac{t_{\text{coh}}}{\lambda}, \quad \text{where} \quad t_{\text{coh}} \propto \frac{2\omega}{k_T^2} \propto \sqrt{\omega/\hat{q}} \]

 \[k_T^2 \propto \hat{q} t_{\text{coh}} \]

 Gluon energy distribution:
 \[\omega \frac{dI_{\text{med}}}{d\omega dz} \propto \frac{1}{N_{\text{coh}}} \omega \frac{dI_1}{d\omega dz} \propto \alpha_s \sqrt{\frac{\hat{q}}{\omega}} \]

 Average energy loss
 \[\Delta E = \int_0^L dz \int_0^{\omega_c} d\omega \omega \frac{dI_{\text{med}}}{d\omega dz} \sim \alpha_s \omega_c \sim \alpha_s \hat{q} L^2 \]
IV.4. Medium-modified Final State Parton Shower

\[
\frac{dI}{d \ln \omega dk_T} = \frac{\alpha_s C_R}{(2\pi)^2 \omega^2} 2 \text{Re} \int \int du d\bar{y} \int dy e^{-ik_Tu} e^{i\omega \bar{y} y}.
\]

(4.5)

\[
K(s = 0, y; u, y | \omega) \quad \text{hard production}
\]

Target average includes Brownian motion:

\[
K(s, y; u, \bar{y} | \omega) = \int_{s = r(\bar{y})}^{u = r(y)} Dr \exp \left[i \int_y \widehat{d\xi} \left\{ \left(\omega r^2 / 2 \right) - n(\xi)\sigma(r) \right\} \right] \quad \omega \to \infty \quad e^{-v(s)}
\]

Two approximation schemes:

1. Harmonic oscillator approximation:

(4.6)

\[
n(\xi)\sigma(r) \triangleq \hat{q}(\xi) r^2
\]

2. Opacity expansion in powers of

(4.7)

\[
\left(\alpha_s \int_0^L d\xi n(\xi)\sigma_{el} \right)^n
\]

Radiation off produced parton

\[\omega = xE \rightarrow (1-x)E\]

BDMPS transport coefficient

\[
\langle Tr[W^A+(0)W^A(r)] \rangle = \exp \left[-\frac{1}{4} \hat{q}L_{long} r^2 \right]
\]
IV.5. Medium-induced gluon energy distribution

Consistent with estimate (4.1), spectrum is indeed determined by

$$\omega_c = \hat{q}L^2/2$$

Transverse momentum distribution is consistent with Brownian motion

IV.6. Opacity Expansion - zeroth order

To understand in more detail the physics contained in

\[
\frac{dI}{d\ln \omega \, dk_T} = \frac{\alpha_s C_R}{(2\pi)^2 \omega^2} 2 \text{Re} \int dy \int dy' \int du e^{-ik_T u} e^{i\pi s \left(\frac{n(x)}{\omega} - \frac{n(x')}{\omega} - \frac{n(u)}{\omega}\right)} K(s = 0, y; u, y | \omega)
\]

We expand this expression in ‘opacity’ (=density of scattering centers times dipole cross section)

\[
K(s, y; u, y) = K_0(s; u) - dr \, d\xi \, K_0(s, y; r, \xi) n(\xi) \sigma(r) K_0(r, \xi; u, y) +
\]

To zeroth order, there is no medium (vacuum case), and one finds:

\[
\omega \frac{dI^{(0)}}{d\omega \, dk_T} = \frac{\alpha_s C_F}{\pi^2} H(k_T) = \left| \begin{array}{c} \times \end{array} \right| 2, \quad H(k_T) = \frac{1}{k_T^2}
\]

So, in the vacuum, the gluon energy distribution displays the dominant \(1/k^2\) piece of the DGLAP parton shower.
IV.7. Opacity Expansion - up to 1st order

To first order in opacity, there is a generally complicate interference between vacuum radiation and medium-induced radiation.

\[
\omega \frac{dI^{(1)}}{d\omega dk_T} = \begin{array}{c}
\left[\text{Figures of vacuum and medium radiation} \right] + \\
\text{Rescattering of vacuum term}
\end{array}
\]

In the parton cascade limit \(L \to \infty \), we identify three contributions:

1. **Probability conservation** of medium-independent vacuum terms.
2. **Transverse phase space** redistribution of vacuum piece.
3. **Medium-induced gluon radiation** of quark coming from minus infinity

\[
\lim_{L \to \infty} nL = \text{const} \omega \frac{dI^{(1)}}{d\omega dk_T} = -w_1 H(k_T) + nL \int_{q_T} dq_T \left[R(q_T, k_T) + H(q_T + k_T) \right]
\]

U.A. Wiedemann
BDMPS-Z calculates in the kinematic regime

\[E \gg \omega \gg \left| k_T \right|, \left| q_T \right| \gg \Lambda_{QCD} \]

Elastic cross section in this limit

\[\frac{1}{\omega} |A(q)|^2 R(k,q) = \sum_{i=2}^{n} \frac{1}{\omega_i} |A(q_i)|^2 \cdot R(k, q_i) \]

Incoherent limit

\[\propto \sum_{i=1}^{\infty} \left| A(q_i) \right|^2 R(k, q_i) \]

Inelastic cross section for multiple scattering

\[\propto \sum_{i=1}^{\infty} \left| A(q_i) \right|^2 R(k, q_i) \]

Coherent limit
IV.9. Example: N=2 opacity

\[\frac{dI(N = 2)}{d \ln \omega \, dk_T} = \frac{\alpha_s C_R}{\pi^2} \left(dq_1 \left(|A(q_1)|^2 - \sigma_{el} \delta(q_1) \right) dq_2 \left(|A(q_2)|^2 - \sigma_{el} \delta(q_2) \right) \right) \]

(4.15)

\[\frac{(nL)^2}{2} R(k + q_1; q_2) - n^2 \frac{1 - \cos LQ_1}{Q_1^2} \left\{ R(k + q_1; q_2) - R(k; q_1 + q_2) \right\} \]

Incoherent

Coherent

Formation times

(4.16)

\[\tau_{f,n} = \frac{1}{Q_n} = \frac{2\omega}{k_T + \sum_{i=1}^{n} q_i^2} \]

define interpolation scale between totally coherent and incoherent limit

(4.17)

\[n^2 \frac{1 - \cos LQ_1}{Q_1^2} \rightarrow \begin{cases} 0 & , L > \tau_{f1} \\ n^2 L^2 / 2 & , L < \tau_{f1} \end{cases} \]

Formally, determine totally coherent and incoherent limiting cases by taking \(L \rightarrow 0 \) or \(L \rightarrow \infty \) for \(nL = \text{fix} \)
IV.10. Main take-home message

• In high-energy limit, the medium-induced splitting $a \rightarrow b+c$, i.e., medium-induced gluon radiation) is regarded as the **most efficient mechanism to degrade energy of partonic projectile a**.
It is more efficient than collisional mechanism $a+b \rightarrow a'+b'$

• Medium-induced gluon radiation has two ‘classical’ limiting cases:
 - **incoherent limit**: radiation = incoherent sum of radiation from all independent scattering centers
 - **coherent limit**: all scattering centers act coherently, as if radiation occurs from one scattering center with $q = \text{sum of the } q_i$

• The **interpolating scale** between coherent and incoherent limits is set by the **gluon formation time**

• Medium-induced quantum interference leads to characteristic **parametric dependencies** of medium-induced gluon radiation, in particular

$$\omega \frac{dI_{\text{med}}}{d\omega} \Delta \propto \alpha_s \sqrt{\frac{\omega_c}{\omega}}, \quad \omega_c = \hat{q}L^2 / 2 \quad \langle k_T^2 \rangle \propto \hat{q}L \quad \Delta E \propto \hat{q}L^2$$
IV.11. Estimating Time scales for parton E-loss

\[L_{\text{hadr}} = \text{const} \frac{E}{Q^2} \]

\[\Delta E \approx E \approx \alpha_s \hat{q} L_{\text{therm}}^2 \]

Dynamics of the bulk
Dynamics of hadronization
Partonic equilibration processes
Jet absorption
Jet modification

\[L_{\text{medium}} \]

100 fm
1 fm

1 GeV
10 GeV
100 GeV

$$R_{AA}(p_T, \eta) = \frac{dN^{AA}/dp_T d\eta}{n_{coll} dN^{NN}/dp_T d\eta}$$

$R_{AA}(p_T) = 1.0$
no suppression

$R_{AA}(p_T) = 0.2$
factor 5 suppression

Centrality dependence:

0-5%
L large

70-90%
L small
IV.13. Suppression at high p_T at RHIC

Centrality dependence:

- 0-5% (L large)
- 70-90% (L small)

π^0 0-5% Central PHENIX
IV.14. Suppression persists to highest p_T

- Spectra in AA and pp-reference
- Nuclear modification factor shows p_T-dependence

ALICE, PLB 696 (2011) 30
IV.15. The Matter is Opaque at RHIC

- STAR azimuthal correlation function shows ~ complete absence of “away-side” (high-pt) particle

\[\Delta \Phi = 0 \]

Partner in hard scatter is *completely absorbed* in the dense medium
IV.16. Dijet asymmetries at LHC

ATLAS

Trigger jet $E_T \sim 100$ GeV

Recoil GONE Or reduced

Calorimeter Towers
IV.17. Dijet asymmetry

\[A_J = \frac{E_{T,1} - E_{T,2}}{E_{T,1} + E_{T,2}} \]

Tremendous recent progress on jet finding algorithms:

- novel class of IR and collinear safe algorithms satisfying SNOWMASS accords
 - $kt(FastJet)$
 - $anti-kt(FastJet)$
 - $SiSCon$e
- new standard for $p+p@LHC$
- fast algorithms, suitable for heavy ions!

Catchment area of a jet:

- novel tools for separating soft fluctuations from jet remnants
- interplay with MCs of jet quenching needed
IV.19. Jet Finding at high event multiplicity (exp)

- Impressive experimental checks
 - energy ‘lost’ from jet cone
 - found completely out-of-cone
 - found in soft components at very large angles
 - Angular distribution of dijets almost unchanged

Some Qualitative Considerations

Problem 1: How can the suppression of R_{AA} and the quenching of reconstructed jets be understood in the same dynamical picture?

Problem 2: How can **this jet broaden** (as suggested by A_j-dependence) while $\Delta \Phi$ - dependence is almost unaffected?
IV.20. Jet quenching via jet collimation?

In medium, formation times of soft partons are shorter

\[
\tau^\text{vac}_f \approx \frac{\omega}{k_T^2} = \frac{1}{\theta^2 \omega}, \quad \tau^\text{med}_f \approx \frac{\omega}{k_T^2} = \sqrt{\frac{\omega}{\hat{q}}}
\]

So \textbf{soft gluons} are there early in the shower and they are radiated at larger angle

\[
\langle \theta^2 \rangle = \frac{\langle k_T^2 \rangle}{\omega^2} = \frac{\hat{q} L}{\omega^2}
\]

A significant fraction of the total jet energy is soft modes

And can be radiated at angles

\[
\langle \theta \rangle \ll 1
\]

Complete decorrelation from jet axis!
IV. 21. Jet quenching via jet collimation:

Facts from first data on dijet asymmetry:

- in Pb-Pb, on average, > 10 GeV more radiated outside cone of recoil jet

- Aj-distribution is broad: some event fraction radiates >20 GeV more energy outside cone of recoil jet

- If 20 GeV were radiated in single component, this would induce significant ΔΦ-broadening, which is not observed

=> medium-induced radiation must be in multiple soft components

Estimate: $30 \leq \hat{q} L \leq 90 \text{GeV}^2$ gets $O(10 \text{GeV})$ out of jet cone.
IV. 22. Towards a MC of jet quenching

Qualitatively:
Radiative parton energy loss naturally contains key elements for understanding quenching of reconstructed jets:

- medium-induced gluon formation time shows inverted dependence on gluon energy
- size of dijet asymmetry (~ 10 GeV outside wide cone) can be accommodated naturally

How to get from qualitative considerations to quantitative analysis?
Strategy pursued here:

- start from analytically known baseline (BDMPS)
- find exact MC implementation of this baseline
- extend MC algorithm to go beyond eikonal limit
- do physics …
Recall IV.9. Example: N=2 opacity

\[
\frac{dI(N = 2)}{d \ln \omega \, dk_T} = \frac{\alpha_s C_R}{\pi^2} \left[dq_1 \left(|A(q_1)|^2 - \sigma_{el} \delta(q_1) \right) \right] \left[dq_2 \left(|A(q_2)|^2 - \sigma_{el} \delta(q_2) \right) \right]
\]

(4.15)

\[
\left(nL \right)^2 R(k + q_i; q_j) - n^2 \frac{1 - \cos LQ_1}{Q_1^2} \left\{ R(k + q_i; q_j) - R(k; q_i + q_j) \right\}
\]

Incoherent

\[
\text{Coherent}
\]

Formation times

(4.16)

\[
\tau_{f, n} = \frac{1}{Q_n} = \frac{2\omega}{k_T + \sum_{i=1}^{n} q_i^2}
\]

define interpolation scale between totally coherent and incoherent limit

(4.17)

\[
n^2 \frac{1 - \cos LQ_1}{Q_1^2} \rightarrow \begin{cases}
0, & L > \tau_{f1} \\
n^2 L^2/2, & L < \tau_{f1}
\end{cases}
\]

Formally, determine totally coherent and incoherent limiting cases by taking \(L \to 0 \) or \(L \to \infty \) for \(nL = \text{fix} \).
Basic idea of jet quenching Monte Carlo:

JHEP 1107:118, 2011

Gluon fragmentation in vacuum shows interference pattern:
Implemented probabilistically e.g. via angular ordering constraint

Gluon fragmentation in medium shows interference pattern:
Implemented probabilistically via formation time constraint
IV.23. Input parameters for MC algorithm

Elastic mean free path

\[\lambda_{el} = \frac{1}{n \sigma_{el}} = \frac{1}{n \int dq |A(q)|^2} \]

\[|A(q)|^2 \propto \frac{1}{(q^2 + \mu^2)^2} \]

Inelastic mean free path

\[\lambda_{inel} = \frac{1}{n \sigma_{inel}} \]

\[\frac{d\sigma_{inel}}{d\omega dk} \propto \frac{1}{\omega} |A(q)|^2 R(k,q) \frac{\lambda_{inel}}{|A(q)|^2} \frac{\alpha_s C_R}{\omega} \delta(k - q) \]

The QCD coupling is then defined by

\[\alpha_s C_R = \frac{\lambda_{el}}{\lambda_{inel} \log[\omega_{\text{max}} / \omega_{\text{min}}]} \]
MC algorithm for gluon number distributions

Aim: first illustration without kinematic complications

Algorithm in the totally incoherent limit:

1. Decide whether and where projectile parton scatters via no scattering probability and density distribution of scatterer

\[S_{no}^{proj}(0;L) = \exp \left(-\frac{L}{\lambda_{inel}} \right) \]

\[\Sigma(0;\xi) = -\frac{dS_{no}^{proj}(0;\xi)}{d\xi} \]

1. After scattering, continue propagating projectile parton inelastically
2. After inelastic scattering, continue propagating produced gluon by counting the number of elastic scatterers between \(\xi \) and \(L \)

Analytical result from BDMPS:
average number of gluons produced with exactly \(j \) momentum in incoherent limit

\[\langle N_{gluons}^{incoh} \rangle_j = \exp \left(\frac{L}{\lambda_{el}} \right) \times \frac{1}{N!} \left(\frac{L}{\lambda_{el}} \right)^{N-1} \frac{L}{\lambda_{inel}} = \frac{L}{\lambda_{inel}} \frac{\Gamma(j) - \Gamma\left(j;\frac{L}{\lambda_{el}}\right)}{\lambda_{el} \Gamma(j)} \]
MC algorithm in the totally coherent limit

- **Basic problem 1:**
 must start with the same no-scattering probability as in incoherent case
 But: $S^{\text{proj}}_{\text{no}}(0;L)$ overestimates scattering probability in the case of coherence
 \Rightarrow Accept produced gluon with **coherent weight**

- **Basic problem 2:**
 algorithm selects initially sharp position ξ for production of gluon
 But: non-zero formation time \Rightarrow **production point localized around** ξ.
 \Rightarrow in MC, gluon can undergo additional elastic scattering in a region, starting as early as $\xi - \tau_f$
Comparing MC algorithm and analytic results

The average number of gluons produced with exactly j momentum transfers from the medium:

$$\lambda_{\text{inel}} = 1.0 \text{ fm}, \quad \lambda_{\text{el}} = 0.1 \text{ fm}, \quad L = 1.3 \text{ fm}$$

$$\left\langle N_{\text{gluons}}^{\text{coh}} \right\rangle_j = \left\langle N_{\text{gluons}}^{\text{coh}} \right\rangle(N = j) = \frac{1}{N!} \frac{L}{\lambda_{\text{el}}} \frac{N^{-1}}{\lambda_{\text{inel}}} \exp \left(-\frac{L}{\lambda_{\text{el}}} \right)$$
Basic idea of jet quenching Monte Carlo:
Gluon fragmentation in vacuum shows interference pattern:
Implemented probabilistically e.g. via angular ordering constraint
Gluon fragmentation in medium shows interference pattern:
Implemented probabilistically via formation time constraint

JHEP 1107:118, 2011

The resulting local and probabilistic Monte Carlo algorithm provides a quantitatively exact implementation of all features of the BDMPS-Z formalism.
IV.24. JEWEL: jet evolution with energy loss

Anchor modeling on theoretically well-controlled limits:

Note: there are many complementary works to implement jet quenching in MC event generators
IV.25. JEWEL: baseline and R_{AA}

K. Zapp, et al., arXiv:1111.6838v2

The graph shows the comparison between PHENIX $p+p$ data and JEWEL+PYTHIA for π^0 production. The plots are on a log scale for the data density and a linear scale for the transverse momentum (p_\perp) range from 2 to 18 GeV. The MC/data ratio is also displayed, indicating the agreement between the model predictions and experimental data.
Nuclear Modification Factor @ RHIC & LHC

K. Zapp, et al., arXiv:1111.6838v2