Measurement of the Top Quark Mass with the Template Method in the ttbar->lepton+jets Channel using ATLAS Data

The Atlas Collaboration

Anthony Hawkins on behalf of the Best Group Ever
Backup
Measurement of the Top Quark Mass with the Template Method in the ttbar->lepton+jets Channel using ATLAS Data

The Atlas Collaboration

Anthony Hawkins on behalf of the Best Group Ever
Outline

• Introduction
• The ATLAS detector
• Event preselection
• Template method
• 1d-analysis
• 2d-analysis
• Systematics
• Results/Conclusion
• Precision measurements of the top and W mass provide a better constraint on the Higgs mass than the combination of many EW observable

• Plays an important role in many extensions of the SM

• Constrain gluon PDF at larger x

• Direct background in H -> W^+ W^-

• The mass of the top quark has been measured with high precision (< 1%) at CDF and D0:
 \[m_t = 173 \pm 0.6(\text{stat}) \pm 0.8(\text{syst}) \text{ GeV} \]
 (arXiv:1107.5255)

\[\sigma_{SM @ NNLO}^{t\bar{t}} = 167^{+17}_{-18} \text{ pb at } \sqrt{s} = 7\text{TeV} \]

\[\text{for } m_{top} = 172.5 \text{ GeV} \]

\[\sim 177k \text{ tt pairs expected in 1.04 fb}^{-1} \]
Magnet system:
B=2T in ID from solenoid B=0.5-1T from toroid

EM calorimeter:
|\eta|<3.2
PbLAr Accordion
\sigma/E = 10%/\sqrt{E} \oplus 0.7%

Hadronic calorimeter:
|\eta|<1.7 Fe/scintillator
1.3<|\eta|<4.9 Cu/WLar
\sigma/E_{\text{jet}} = 50%/\sqrt{E} \oplus 3%

Inner Detector:
|\eta|<2.5
Si pixels/strips
\sigma/p_{T} = 0.05% \times p_{T} (\text{GeV}) \oplus 1%

Trigger system:
3 levels to reduce 20MHZ collision rate to \sim 300Hz of events to tape

Muon Spectrometer:
|\eta|<2.7
Aircore toroids and gasbased muon chambers
\sigma/p_{T} = 2\% @ 50GeV to 10\% @ 1TeV (ID+MS)
Single lepton decay

$t\bar{t} \rightarrow W^+ b \ W^- \bar{b} \rightarrow q\bar{q} b \ l\nu \bar{b}$
Single lepton decay (1)
Single lepton decay (1)
Single lepton decay (2)

\[t\bar{t} \rightarrow W^+b \ W^-\bar{b} \rightarrow q\bar{q}b \ l\nu \bar{b} \]

- \(\text{BR}(t \rightarrow Wb) \sim 1 \)
- \(\text{BR}(W \rightarrow l\nu) = 0.108 \) (for each \(l = e, \mu, \tau \))
- \(\text{BR}(W \rightarrow q\bar{q}) = 1 - 3 \times 0.108 = 0.676 \)
 \[\implies \text{BR(DILEPT.)} = (3 \cdot 0.108)^2 \sim 11\% \]
 \[\implies \text{BR(FULLY HAD.)} = 0.676^2 \sim 46\% \]
 \[\implies \text{BR(SINGLE LEPT.)} \sim 43\% \]

* \(\tau \) channel not used here

Main backgrounds (common to 1d & 2d analysis):
- \(W^+ \) jets (major background)
- \(QCD \) multijet (fake high-\(p_T \) lepton & MET mis-measurement)
- \(Z^+ \) jets (missing one lepton & bad jet recons.)
- \(ZZ/WZ/WW \) (minor background)
- Single top (only for the 2d analysis)
Event preselection

Common requirements for 1d & 2d analysis:

<table>
<thead>
<tr>
<th>Cut</th>
<th>μ+jets</th>
<th>e+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton Transverse Energy</td>
<td>$p_T > 20$ GeV</td>
<td>$p_T > 25$ GeV</td>
</tr>
<tr>
<td>Pseudorapidity</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>Missing E_T</td>
<td>$E_T^{\text{miss}} > 20$ GeV</td>
<td>$E_T^{\text{miss}} > 35$ GeV</td>
</tr>
<tr>
<td>Transverse Mass</td>
<td>$E_T^{\text{miss}} + m_T^W > 60$ GeV</td>
<td>$m_T^W > 25$ GeV</td>
</tr>
<tr>
<td>Isolation</td>
<td>$E_T (\Delta R =0.2)<3.5$ GeV</td>
<td>$E_T (\Delta R=0.3)<4$ GeV</td>
</tr>
<tr>
<td>Jets (Anti-k_t R=0.4)</td>
<td>≥ 4 jets & $p_T > 25$ GeV & $</td>
<td>\eta</td>
</tr>
</tbody>
</table>

Specific requirements, depending on the analysis (1d or 2d), will be further described.
Template method

- Choice of observables x_i which are sensitive to m_{top}
- Create MC -Samples for different m_{top}: 160, 170, 172.5, 175, 180, 190 GeV
- Find continuous parametrization of shape of x_i as function of m_{top} (and other parameters)
- Estimate m_{top} from DATA distribution

<table>
<thead>
<tr>
<th>1-d</th>
<th>2-d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 = R_{32} = \frac{m_{top}^{reco}}{m_W^{reco}}$</td>
<td>$x_1 = m_{top}^{reco}$</td>
</tr>
<tr>
<td>- Fitting m_{top}, n_{bckg}</td>
<td>- Fitting m_{top}, JSF, n_{bckg}</td>
</tr>
<tr>
<td>- In this ratio the dependency on the JES scale is reduced significantly</td>
<td>- JSF as a fitting parameter</td>
</tr>
</tbody>
</table>
1D Template

• Selection of the top associated jets: kinematic likelihood relating the objects to the $t\bar{t}$ decay products predicted by Monte Carlo (MC@NLO)

• Maximum likelihood built from the 4 jet combinations per each event

• Use the reconstructed four vectors objects (jets and leptons) and Missing Transverse Momentum

• The maximized value of the likelihood discriminates mismatches and correct matching (cut at $-\ln L=50$)

Transfer function between reconstructed objects and MC generator level matched objects

B Breit Wigner functions modeling the top and W masses.

Wbtag Weights containing b-tagging information
1D Template

- Combination of single top and t \bar{t} contribution for each choice of \(m_{top} \)
- Parametrization of R\(_{32} \) templates by a ratio of two gaussians (for the two mass distributions) summed to a Landau (modeling the tail contribution)
- Linear assumption on the parameters dependance to \(m_{top} \)
- Overall \(\chi^2 \) minimization of R\(_{32} \) at all mass points
- Template fit with binned likelihood for signal yield and top mass

\[
L(R_{32}|m_{top}) = L_{shape}(R_{32}|m_{top}) \times L_{bkg}(R_{32})
\]

\[
L_{shape}(R_{32}|m_{top}) = \prod_{i=1}^{N_{bins}} \frac{\lambda_i^{N_i}}{N_i!} \cdot e^{-\lambda_i}, \quad L_{bkg}(R_{32}) = \exp \left\{ -\frac{(n_{bkg} - n_{bkg}^{pred})^2}{2\sigma_{n_{bkg}^{pred}}^2} \right\}
\]

\[
\lambda_i = (N - n_{bkg}) \cdot P_{sig}(R_{32}|m_{top})_i + n_{bkg} \cdot P_{bkg}(R_{32})_i
\]

- Performance of this algorithm tested with pseudo-experiments
 - Poisson statistics for signal events
 - Background fluctuations around expected values (S.M. predictions)
 - Linearity between input and estimates

\[
\begin{align*}
m_{top} &= 172.9 \pm 1.5 \\
m_{top} &= 175.5 \pm 1.1
\end{align*}
\]

\[
m_{top} = 174.4 \pm 0.9 \text{ GeV}
\]
2D Template

- Construct jet triplet, 1 b-jet & 2 light jets
- Build $m_{\text{top}}^{\text{reco}}$ with b-jet (unscaled) and light jets(scaled)
- Build m_{W}^{reco} with unscaled light jets

Construct templates with JSF varied from 0.9-1.1 and m_{top} from 160-190 GeV

- Parameterize likelihood functions with the templates.
Parametrization found to have good linearity for JSF and m_{top}

Maximized likelihood with data and found

- $e+\text{jets}$: $m_{\text{top}} = 174.3 \pm 0.8_{\text{stat}} \pm 2.3_{\text{syst}}$ GeV
- $\mu+\text{jets}$: $m_{\text{top}} = 175.0 \pm 0.7_{\text{stat}} \pm 2.6_{\text{syst}}$ GeV
Systematic Uncertainties

- vary parameters ±1σ
- run pseudo-experiments with changed parameters
- add in quadrature, no correlation

Largest contributions:

• Jet energy scale:
 • Impact smaller than JES itself:
 • minimized in R32 observable for 1d fit.
 • constrained in 2d fit.

• b-jet energy scale
 • Differences in fragmentation and hadronization of jets from light-quarks and b-quarks

• ISR and FSR
 • pseudo-experiments with dedicated signal samples where Pythia shower parameters are varied.

<table>
<thead>
<tr>
<th></th>
<th>1d template</th>
<th>2d template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>0.71%</td>
<td>0.38%</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>0.67%</td>
<td>0.91%</td>
</tr>
<tr>
<td>ISR and FSR</td>
<td>0.81%</td>
<td>0.58%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.43%</td>
<td>1.32%</td>
</tr>
</tbody>
</table>
Conclusion

• Top mass measured using 2 different methods

• Both mitigating the impact of the 3 largest systematics

\[m_t = 174.5 \pm 0.6 \text{(stat)} \pm 2.3 \text{(syst)} \text{ GeV} \]

(2d analysis)
Back-up slides
Full systematics

<table>
<thead>
<tr>
<th></th>
<th>1d-analysis</th>
<th>2d-analysis</th>
<th>Combinations</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e+jets</td>
<td>µ+jets</td>
<td>e+jets</td>
<td>µ+jets</td>
</tr>
<tr>
<td>Measured value of (m_{\text{top}})</td>
<td>172.93</td>
<td>175.54</td>
<td>174.30</td>
<td>175.01</td>
</tr>
<tr>
<td>Data statistics</td>
<td>1.46</td>
<td>1.13</td>
<td>0.83</td>
<td>0.74</td>
</tr>
<tr>
<td>Jet energy scale factor</td>
<td>na</td>
<td>na</td>
<td>0.59</td>
<td>0.51</td>
</tr>
<tr>
<td>Method calibration</td>
<td>0.07</td>
<td>< 0.05</td>
<td>0.10</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Signal MC generator</td>
<td>0.81</td>
<td>0.69</td>
<td>0.39</td>
<td>0.22</td>
</tr>
<tr>
<td>Hadronisation</td>
<td>0.33</td>
<td>0.52</td>
<td>0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>Pileup</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Underlying event</td>
<td>0.06</td>
<td>0.10</td>
<td>0.42</td>
<td>0.96</td>
</tr>
<tr>
<td>Colour reconnection</td>
<td>0.47</td>
<td>0.74</td>
<td>0.32</td>
<td>1.04</td>
</tr>
<tr>
<td>ISR and FSR (signal only)</td>
<td>1.45</td>
<td>1.40</td>
<td>1.04</td>
<td>0.95</td>
</tr>
<tr>
<td>Proton PDF</td>
<td>0.22</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>W+jets background normalisation</td>
<td>0.16</td>
<td>0.19</td>
<td>0.34</td>
<td>0.44</td>
</tr>
<tr>
<td>W+jets background shape</td>
<td>0.11</td>
<td>0.74</td>
<td>0.42</td>
<td>0.96</td>
</tr>
<tr>
<td>QCD multijet background normalisation</td>
<td>0.07</td>
<td>< 0.05</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>QCD multijet background shape</td>
<td>0.14</td>
<td>0.12</td>
<td>0.38</td>
<td>0.30</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>1.21</td>
<td>1.25</td>
<td>0.63</td>
<td>0.71</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>1.09</td>
<td>1.21</td>
<td>1.61</td>
<td>1.53</td>
</tr>
<tr>
<td>b-tagging efficiency and mistag rate</td>
<td>0.21</td>
<td>0.13</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.34</td>
<td>0.38</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Jet reconstruction efficiency</td>
<td>0.08</td>
<td>0.11</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Missing transverse momentum</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>2.46</td>
<td>2.56</td>
<td>2.31</td>
<td>2.57</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>2.86</td>
<td>2.80</td>
<td>2.46</td>
<td>2.68</td>
</tr>
</tbody>
</table>