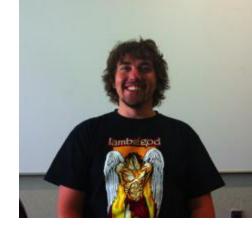
Measurement of the Top Quark Mass with the Template Method in the ttbar->lepton+jets Channel using ATLAS Data

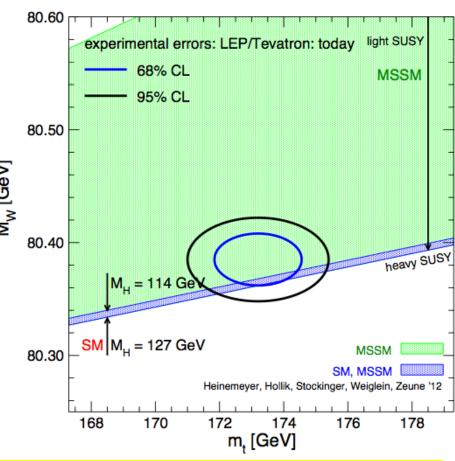
The Atlas Collaboration

Anthony Hawkins on behalf of the Best Group Ever

Backup


Measurement of the Top Quark Mass with the Template Method in the ttbar->lepton+jets Channel using ATLAS Data

The Atlas Collaboration


Anthony Hawkins on behalf of the Best Group Ever

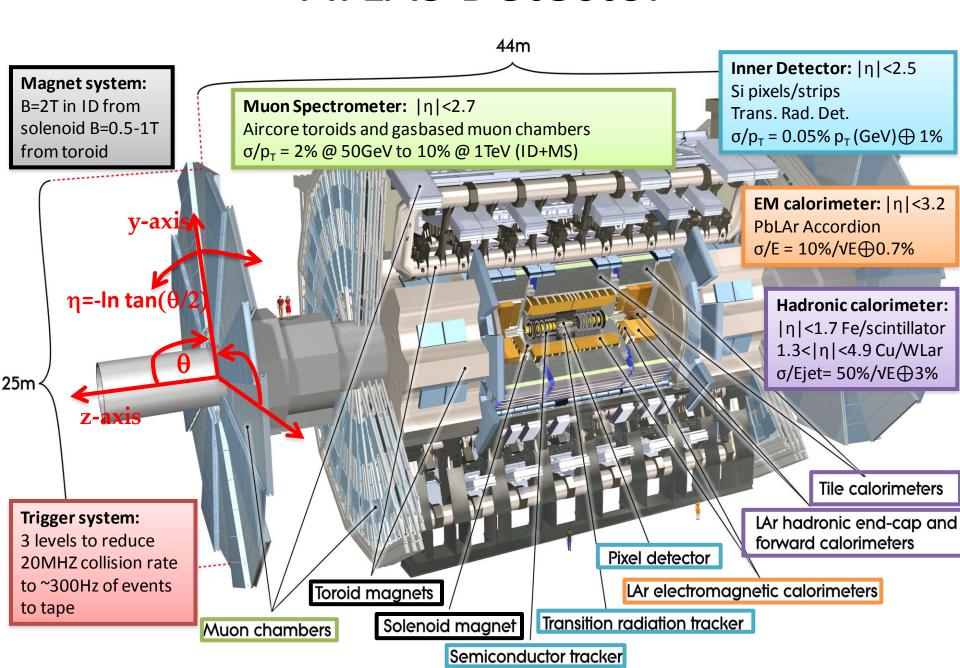
Outline

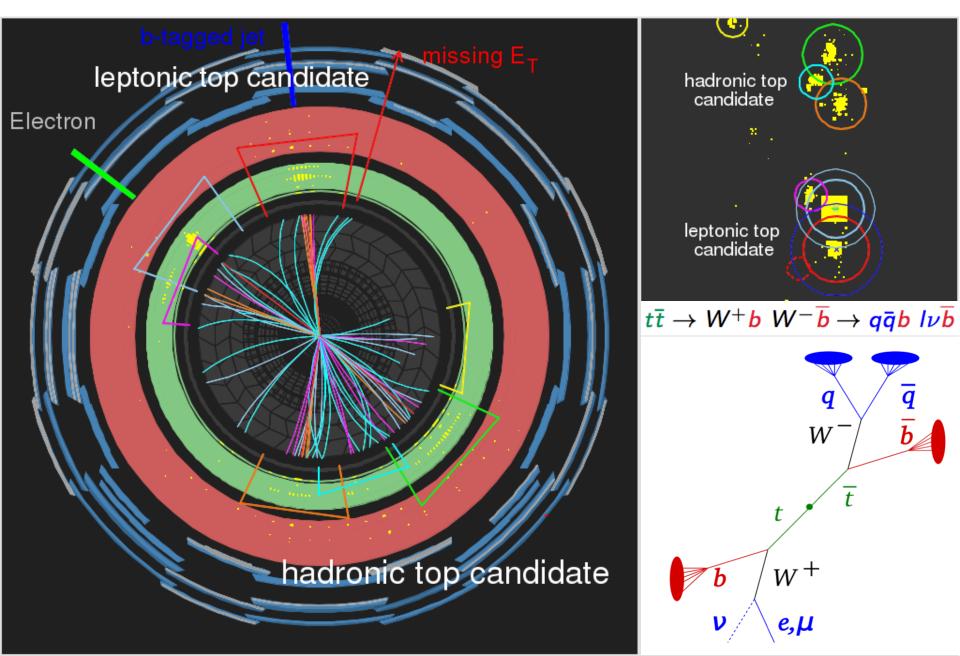
- Introduction
- The ATLAS detector
- Event preselection
- Template method
- 1d-analysis
- 2d-analysis
- Systematics
- Results/Conclusion

Introduction

$$\sigma_{SM @ NNLO}^{t\bar{t}} = 167_{-18}^{+17} \text{ pb at } \sqrt{s} = 7TeV$$

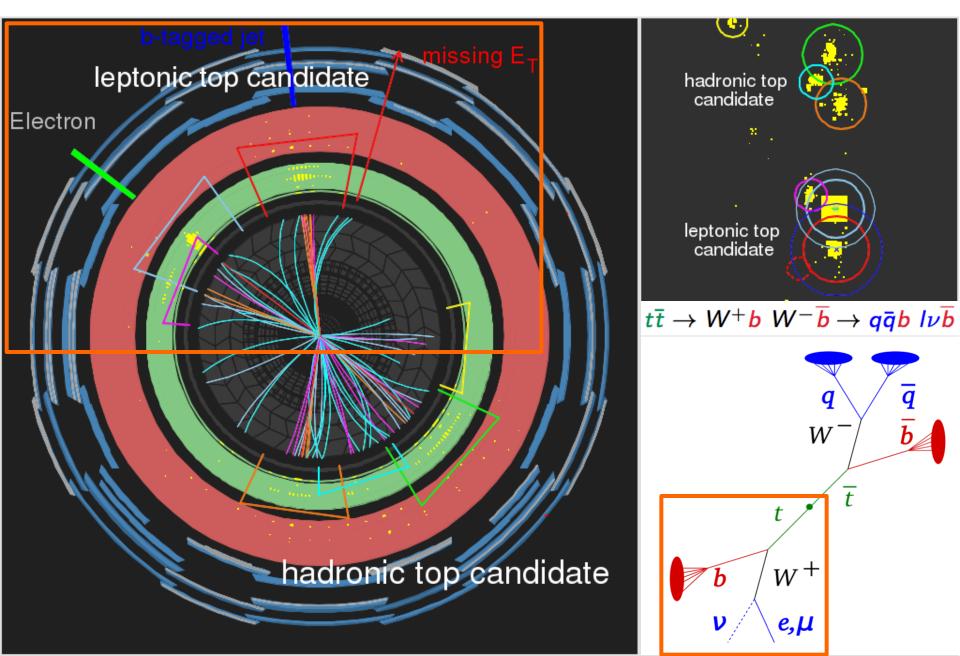
for $m_{top} = 172.5 \text{ GeV}$

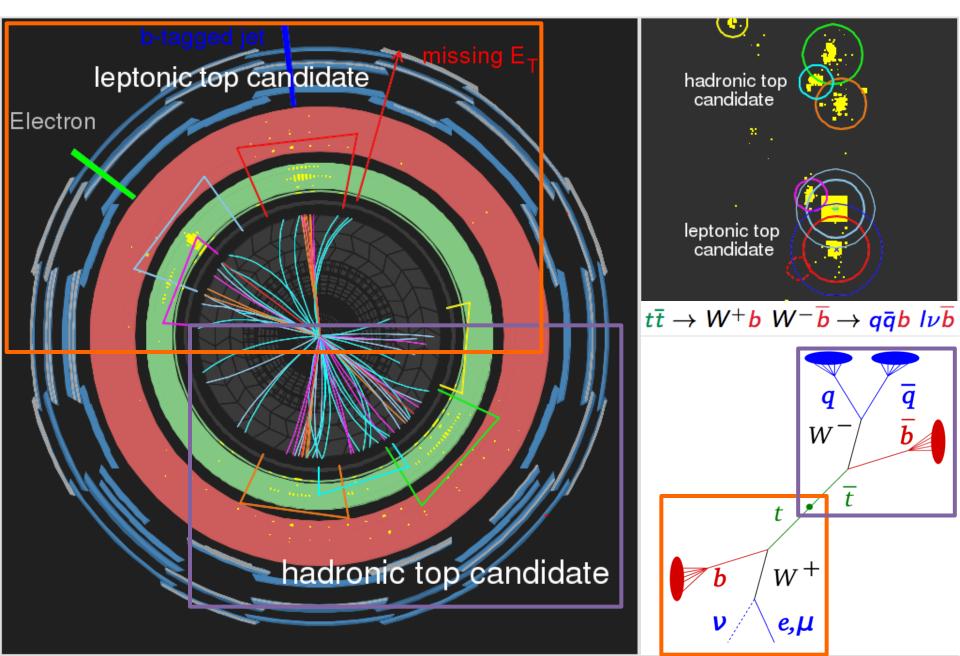

~ 177k tt pairs expected in 1.04 fb⁻¹

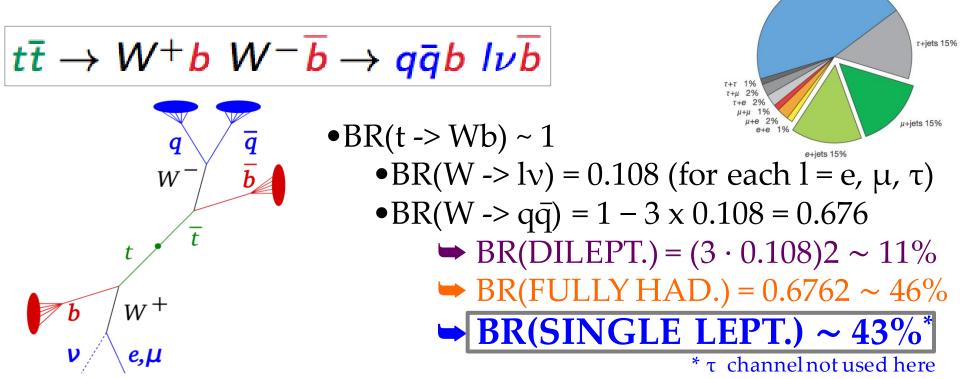

- Precision measurements of the top and W mass provide a better constraint on the Higgs mass than the combination of many EW observable
- Plays an important role in many extensions of the SM
- Constrain gluon PDF at larger x
- Direct background in H -> W⁺ W⁻
- The mass of the top quark has been measured with high precision (< 1%) at CDF and D0:

$$m_t = 173 \pm 0.6(stat) \pm 0.8(syst) \text{ GeV}$$

(arXiv:1107.5255)


ATLAS Detector


Single lepton decay (1)


Single lepton decay (1)

Single lepton decay (1)

Single lepton decay (2)

Main backgrounds (common to 1d & 2d analysis):

- W+ jets (major background)
- **QCD multijet** (fake high-p_T lepton & MET mis-measurement)
- **Z+ jets** (missing one lepton & bad jet recons.)
- **ZZ/WZ/WW** (minor background)
- **Single top** (only for the 2d analysis)

Event preselection

Common requirements for 1d & 2d analysis:

Cut

Transverse Mass

Isolation

e+jets

 $m_{W}^{T} > 25 \text{ GeV}$

 $E_{\tau} (\Delta R = 0.3) < 4 \text{ GeV}$

Lepton Transverse Energy	p _T >20 GeV	p _T >25 GeV			
Pseudorapidity	η <2.5	η <2.47 excluding 1.37< η <1.52			
Missing E _T	E _T miss > 20 GeV	E _T ^{miss} > 35 GeV			

 $E_T^{miss} + m_W^T > 60 \text{ GeV}$

 E_{T} ($\Delta R = 0.2$)<3.5 GeV

μ+jets

Jets (Anti-k_t R=0.4) ≥4 jets & $p_T>25$ GeV & $|\eta|<2.5$ & >=1 b-jet. Specific requirements, depending on the analysis (1d or 2d), will be further described

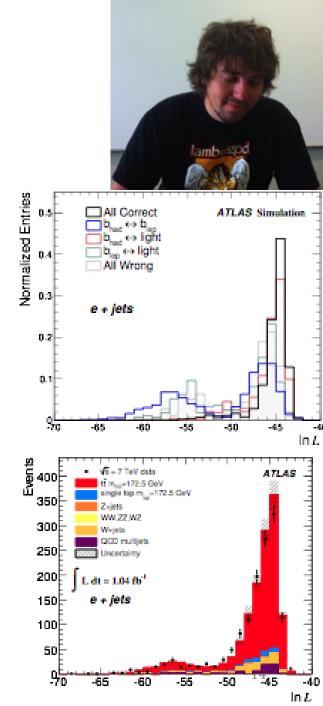
Template method

- Choice of observables x_i which are sensitive to m_{top}
- Create MC -Samples for different m_{top} : 160, 170,172.5,175,180,190 GeV

- Find continuous parametrization of shape of x_i as function of m_{top} (and other parameters)
- Estimate m_{top} from DATA distribution

1-d	2-d			
$x_1=R_{32}=rac{m_{top}^{reco}}{m_W^{reco}}$ • Fitting $m_{top,}$ n_{bckg} • In this ratio the dependency on the JES scale is reduced significantly	$x_1=m_{top}^{reco} \ x_2=m_W^{reco}$ • Fitting m_{top},JSF, n_{bkg} • JSF as a fitting parameter			

1D Template


- Selection of the top associated jets: kinematic likelihood relating the objects to the t \bar{t} decay products predicted by Monte Carlo (MC@NLO)
- Maximum likelihood built from the 4 jet combinations per each event
- Use the reconstructed four vectors objects (jets and leptons) and Missing Transverse Momentum
- •The maximized value of the likelihood discriminates mismatches and correct matching (cut at -ln L=50)

T Transfer function between reconstructed objects and MC generator level matched objects

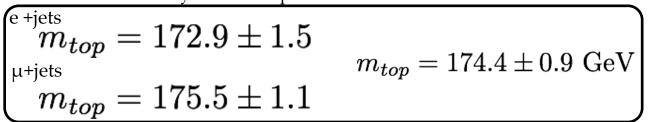
B Breit Wigner functions modeling the top and W masses.

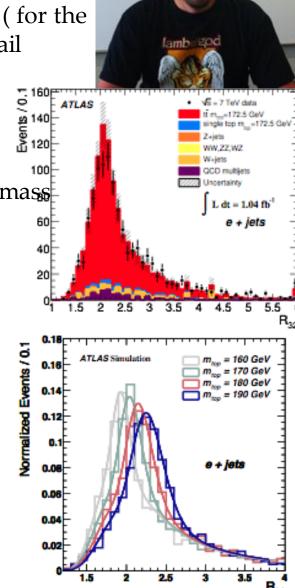
Wbtag Weights containing b-tagging information

$$\begin{split} L &= \mathcal{T} \left(E_{\text{jet}_1} | \hat{E}_{b_{\text{had}}} \right) \cdot \mathcal{T} \left(E_{\text{jet}_2} | \hat{E}_{b_\ell} \right) \cdot \mathcal{T} \left(E_{\text{jet}_3} | \hat{E}_{q_1} \right) \cdot \\ &\quad \mathcal{T} \left(E_{\text{jet}_4} | \hat{E}_{q_2} \right) \cdot \mathcal{T} \left(E_{x}^{\text{miss}} | \hat{p}_{x,\nu} \right) \cdot \mathcal{T} \left(E_{y}^{\text{miss}} | \hat{p}_{y,\nu} \right) \cdot \\ &\quad \left\{ \begin{array}{l} \mathcal{T} \left(E_{e} | \hat{E}_{e} \right) & e \text{+ jets} \\ \mathcal{T} \left(p_{T,\mu} | \hat{p}_{T,\mu} \right) & \mu \text{+ jets} \end{array} \right\} \\ &\quad \mathcal{B} \left[m(q_1 | q_2) | m_W, \Gamma_W \right] \cdot \mathcal{B} \left[m(\ell | \nu) | m_W, \Gamma_W \right] \cdot \\ &\quad \mathcal{B} \left[m(q_1 | q_2) | m_W, \Gamma_W \right] \cdot \mathcal{B} \left[m(\ell | \nu) | m_W, \Gamma_W \right] \cdot \\ &\quad \mathcal{B} \left[m(\ell | \nu) | m_{\text{top}}^{\text{reco,like}}, \Gamma_{\text{top}} \right] \cdot W_{\text{btag}} \cdot \end{split} \right] \end{split}$$

1D Template

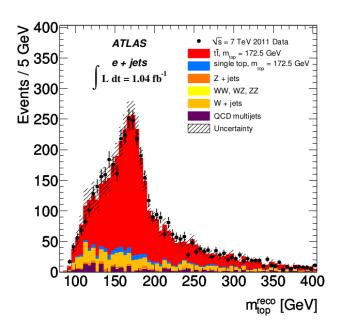
- Combination of single top and t \bar{t} contribution for each choice of m_{top}
- Parametrization of R₃₂ templates by a ratio of two gaussians (for the two mass distributions) summed to a Landau (modeling the tail contribution)
- Linear assumption on the parameters dependance to *mtop*
- Overall χ^2 minimization of R₃₂ at all mass points
- Template fit with binned likelihood for signal yield and top mass

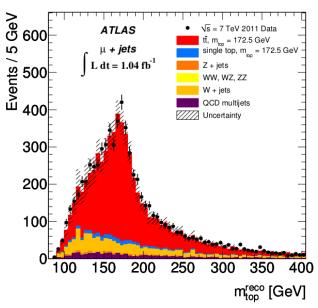

$$egin{aligned} L(R_{32}|m_{top}) &= L_{shape}(R_{32}|m_{top}) imes L_{bkg}(R_{32}) \ L_{shape}(R_{32}|m_{top}) &= \prod_{i=1}^{N_{ ext{bins}}} rac{\lambda_i^{N_i}}{N_i!} \cdot e^{-\lambda_i} \qquad L_{bkg}(R_{32}) = \exp\left\{-rac{(n_{bkg} - n_{bkg}^{pred})^2}{2\sigma_{n_{bkg}}^{2red}}
ight\}. \end{aligned}$$


$$\lambda_i = (N - n_{bkg}) \cdot P_{sig}(R_{32}|m_{top})_i + n_{bkg} \cdot P_{bkg}(R_{32})_i$$

- Performance of this algorithm tested with pseudo-experiments
 - Poisson statistics for signal events
 - Background fluctuations around expected values (S.M.

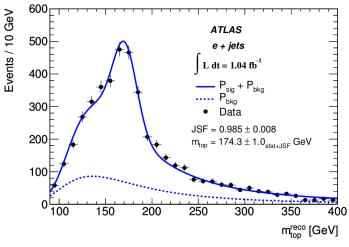
predictions)

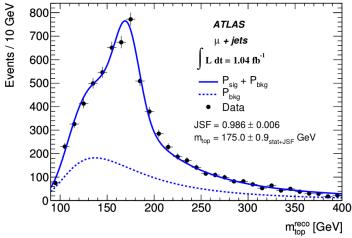

- Linearity between input and estimates



2D Template

- Construct jet triplet, 1 b-jet &
 2 light jets
- Build m_{top} reco with b-jet (unscaled) and light jets(scaled)
- Build m_W^{reco} with unscaled light jets
- Construct templates with JSF varied from 0.9-1.1 and m_{top} from 160-190 GeV
- Parameterize likelihood functions with the templates.




2D Template (Cont'd)

- Parametrization found to have good linearity for JSF and m_{top}
- Maximized likelihood with data and found

- e+jets: $m_{top} = 174.3 \pm 0.8_{stat} \pm 2.3_{syst}$ GeV
- μ +jets: m_{top} =175.0 \pm 0.7 $_{stat}$ \pm 2.6 $_{syst}$ GeV

Systematic Uncertainties

- vary parameters $\pm 1\sigma$
- run pseudo-experiments with changed parameters
- add in quadrature, no correlation

	1d template	2d template			
Jet energy scale	0.71%	0.38%			
b-jet energy scale	0.67%	0.91%			
ISR and FSR	0.81%	0.58%			
TOTAL	1.43%	1.32%			

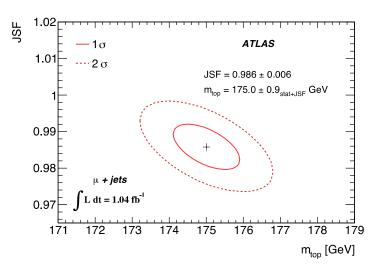
Largest contributions:

•Jet energy scale:

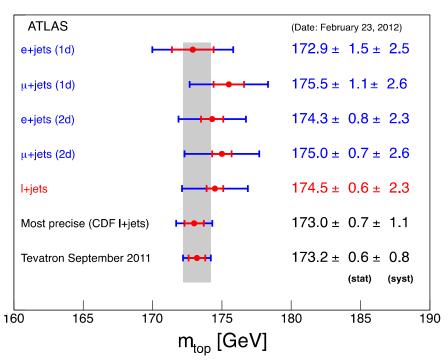
- Impact smaller than JES itself:
 - minimized in R32 observable for 1d fit.

18

constrained in 2d fit.


•b-jet energy scale

 Differences in fragmentation and hadronization of jets from light-quarks and bquarks

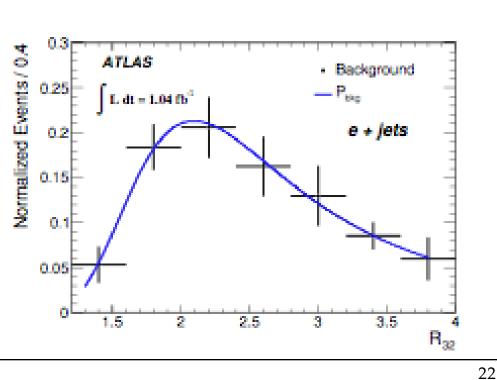

•ISR and FSR

 pseudo-experiments with dedicated signal samples where Pythia shower parameters are varied.

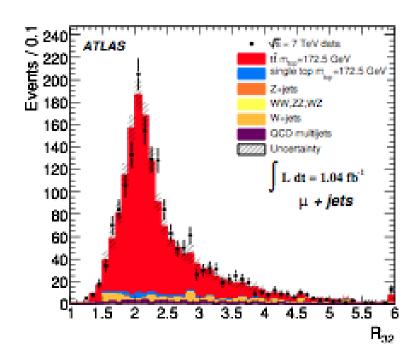
Conclusion

(b) μ +jets channel

- Top mass measured using 2 different methods
- •Both mitigating the impact of the 3 largest systematics


$$m_t = 174.5 \pm 0.6(stat) \pm 2.3(syst)$$

GeV (2d analysis)


Back-up slides

Full systematics

	1d-analysis		2d-analysis		Combinations		Correlation
	e+jets	μ+jets	e+jets	μ+jets	1d	2d	ρ
Measured value of m_{top}	172.93	175.54	174.30	175.01	174.35	174.53	
Data statistics	1.46	1.13	0.83	0.74	0.91	0.61	
Jet energy scale factor	na	na	0.59	0.51	na	0.43	0
Method calibration	0.07	< 0.05	0.10	< 0.05	< 0.05	0.07	0
Signal MC generator	0.81	0.69	0.39	0.22	0.74	0.33	1
Hadronisation	0.33	0.52	0.20	0.06	0.43	0.15	1
Pileup	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1
Underlying event	0.06	0.10	0.42	0.96	0.08	0.59	1
Colour reconnection	0.47	0.74	0.32	1.04	0.62	0.55	1
ISR and FSR (signal only)	1.45	1.40	1.04	0.95	1.42	1.01	1
Proton PDF	0.22	0.09	0.10	0.10	0.15	0.10	1
W+jets background normalisation	0.16	0.19	0.34	0.44	0.18	0.37	1
W+jets background shape	0.11	0.18	0.07	0.22	0.15	0.12	1
QCD multijet background normalisation	0.07	< 0.05	0.25	0.33	< 0.05	0.20	(1)
QCD multijet background shape	0.14	0.12	0.38	0.30	0.09	0.27	(1)
Jet energy scale	1.21	1.25	0.63	0.71	1.23	0.66	1
b-jet energy scale	1.09	1.21	1.61	1.53	1.16	1.58	1
b-tagging efficiency and mistag rate	0.21	0.13	0.31	0.26	0.17	0.29	1
Jet energy resolution	0.34	0.38	0.07	0.07	0.36	0.07	1
Jet reconstruction efficiency	0.08	0.11	< 0.05	< 0.05	0.10	< 0.05	1
Missing transverse momentum	< 0.05	< 0.05	0.12	0.16	< 0.05	0.13	1
Total systematic uncertainty	2.46	2.56	2.31	2.57	2.50	2.31	
Total uncertainty	2.86	2.80	2.46	2.68	2.66	2.39	

Backup

Jun 16, 2012