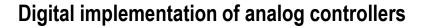


Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut Hans Jäckle

Basic powersupply control – Digital implementation of analog controllers



Topics

Part 1: Basic Powersupply Controller

- Essential Tasks of a basic powersupply controller and how to achieve them

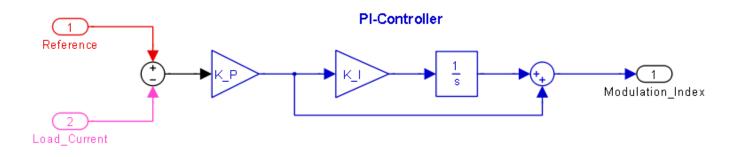
Part 2: Discretization

PAUL SCHERRER INSTITUT

- Paths to discrete controller
- Methods of discretization
- Effects of SamplingTime

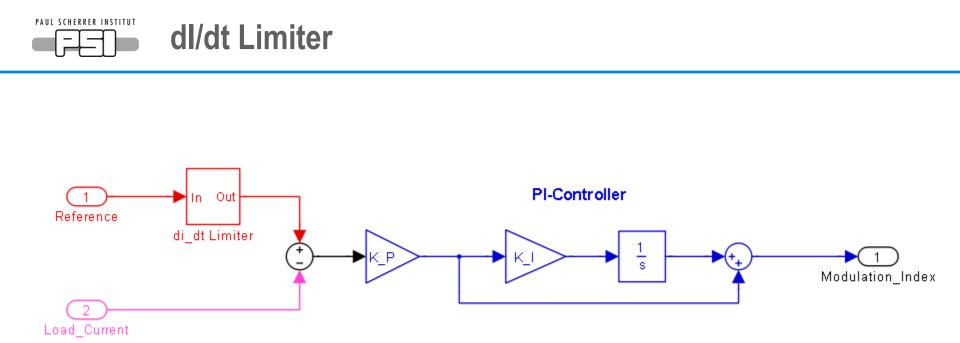
Achieve zero steady-state error
 -> Integral action

PI Controller



- Ki = 1 / T_{Magnet} -> experimentally (step response in open loop) -> Ki = R_{Magnet} / L_{Magnet}
- Kp can be found manually, starting value: $Kp_init = R_{Magnet} / U_{DC_Link} * \omega_{CL} / Ki$

- Achieve zero steady-state error
 - -> Integral action
- keep operation of controller linear (avoid limitations)
 - -> Limit di_{Ref} / dt
 - -> Anti-Windup



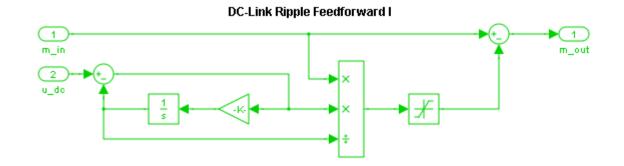
• Keeps the controller in the linear regime by preventing actuator saturation

$$\left(\frac{dI}{dt}\right)_{MAX} = \frac{U_{DC_MIN} - U_{CONV} - I_{NOM} * R_{MAGNET_MAX}}{L_{MAGNET}}$$

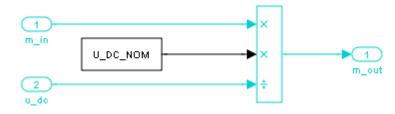
• Anti-Windup is a remedy in case of actuator saturation

- Achieve zero error
 - -> Integral action
- Stay in linear region
 - -> Limit di_{Ref} / dt
 - -> Anti-Windup
- Suppress dc-link voltage disturbances (e.g. 300Hz Ripple)
 ->feedforward the dc-link disturbances

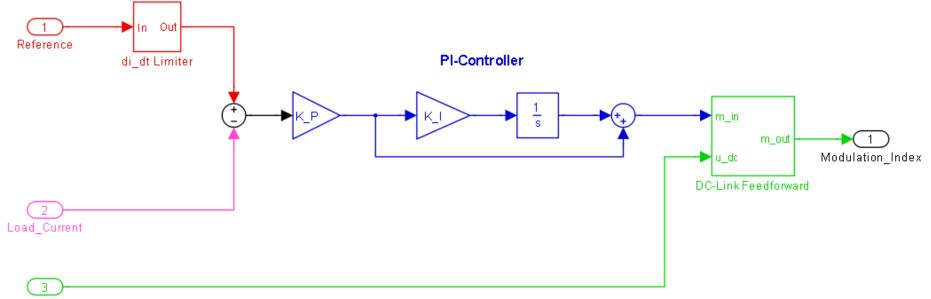
DC-Link Feedforwards



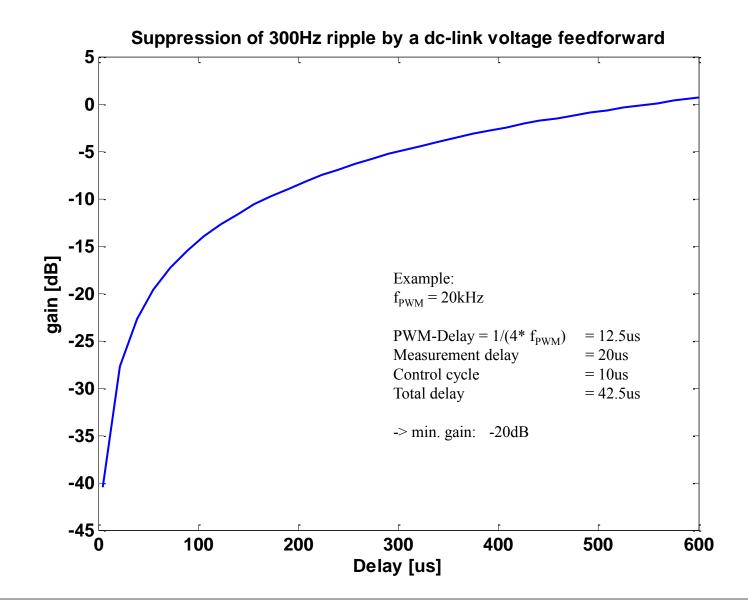
DC-Link Feedforward



DC-Link Feedforward



DC_Link_Voltage

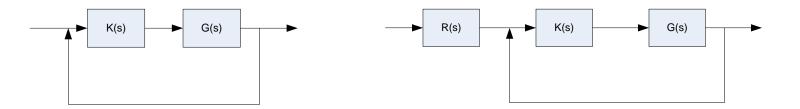


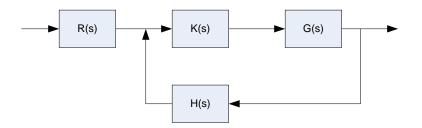
- Achieve zero error
 - -> Integral action
- •Stay in linear region
 - -> Limit di_{Ref} / dt
 - -> Anti-Windup
- Suppress dc-link voltage disturbances
 ->feedforward the dc-link disturbances

Protect Output Filter Resistor

- -> Output limiter
- Reduce measurement noise
 - -> Lowpass-filter for the measured value
- Reduce overshoot
 - -> Lowpass-filter for the reference value

- Compensation of higher order plant dynamics e.g. the output filter
- 2-DOF structure to seperately tune reference tracking and disturbance rejection

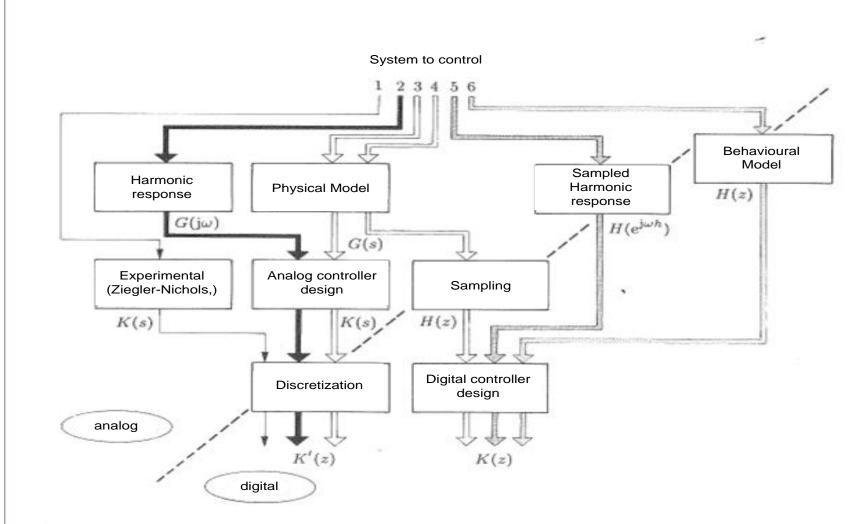




Analog:

$$u(t) = Kp^{*}(e(t) + Ki^{*} \int e(t)dt) \qquad <-> \qquad K(s) = \frac{U(s)}{E(s)} = Kp^{*}(1 + \frac{Ki}{s})$$

Paths to discrete controller



Source: Commande numérique de systèmes dynamiques, R. Longchamp

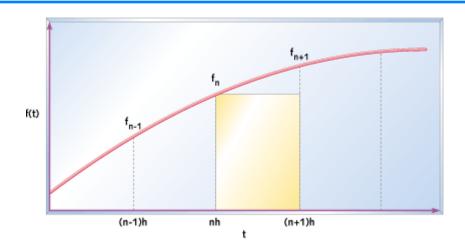
Area based approximations:

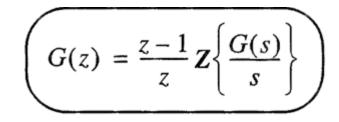
- Forward difference
- Backward difference
- Trapezoidal (Tustin, bilinear)

Response Invariant transforms:

- Step response (zero-order hold)
- Ramp response
- Impulse response

Pole-zero mapping





Area based approximations

Forward Euler:

$$y(n) = y(n-1) + T_s *u(n-1)$$
$$K(z) = \frac{T_s}{z-1}$$

Backward Euler:

$$y(n) = y(n-1) + T_s *u(n)$$
$$K(z) = \frac{zT_s}{z-1}$$

Trapezoidal:

$$y(n) = y(n-1) + \frac{T_s}{2} * (u(n-1) + u(n))$$
$$K(z) = \frac{T_s}{2} \frac{z+1}{z-1}$$

Analog:

$$u(t) = Kp^{*}(e(t) + Ki^{*} \int e(t)dt) \qquad <-> \qquad K(s) = \frac{U(s)}{E(s)} = Kp^{*}(1 + \frac{Ki}{s})$$

Discrete:

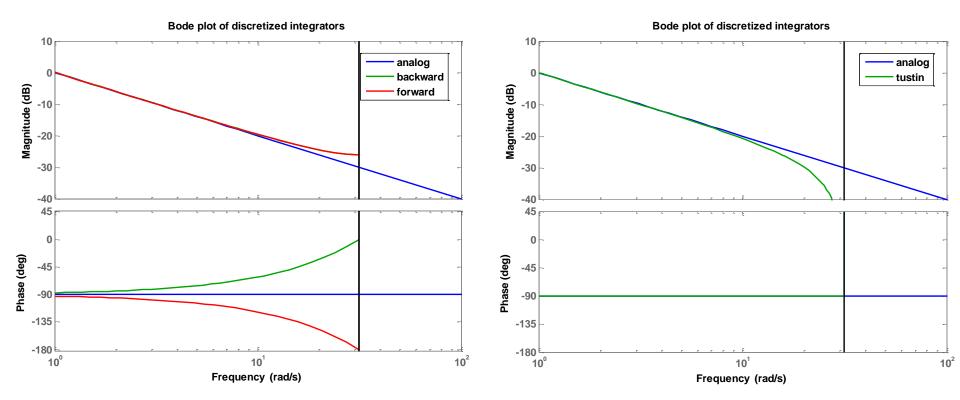
$$u(k) = Kp^{*}(e(k) + e(k-1)^{*}(Ki^{*}T_{s}-1) + u(k-1) \quad <-> \quad K(z) = \frac{U(z)}{E(z)} = Kp^{*}(1 + \frac{Ki^{*}T_{s}}{z-1})$$

Approximations z <--> s

Näherung	Substitution T konstant	Abbildung $G(s) \rightarrow G(z)$ s-Ebene	z-Ebene
Rechteckregel vorwärts (Euler)	$s = \frac{z-1}{T}$ $z = 1 + sT$	Im Re 0	Im Re
Rechteckregel rückwärts \	$s = \frac{1}{T} \frac{z - 1}{z}$ $z = \frac{1}{1 - sT}$	Im Re 0	Im Re
Trapezregel (Bilinear-Form, Tustin-Form)	$s = \frac{2}{T} \frac{z-1}{z+1}$ $z = \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}}$	e Im Re	↓ Im ↓ Re

Source: Theorie der Regelungstechnik, Hugo Gassmann

Bode plot of integrators



How to choose sampling time

- too large -> loss of information
- too small -> loss of precision (numerical issues) / computational overload
- No absolute truth -> rules of thumb:
 - 10x faster than Shannons sampling theorem
 - Fs = 10 30x system bandwidth
 - Loss of phase margin not more than 5° $\,$ -15° $\,$ compared to the continuous system

Summary

- PI controller for magnet powersupplies is a good choice:
 - can be manually tuned (only two parameters Kp & Ki)
 - good static performance (zero error)
 - reasonable dynamic performance
- Fast enough sampling rate allows to regard the discrete PI controller as a (quasi-)continous controller.
- High frequency behaviour not compensated (output filter resonance)

