An Effective Theory for Higgs Compositeness

Jay Hubisz Syracuse University 2/27/2011

WIP - Bellazzini, Csáki, JH, Serra, Terning

Perspectives on Higgs physics By G. L. Kane

Why I would be very sad if a Higgs boson were discovered*[†]

Howard Georgi Lyman Laboratory of Physics Harvard University Cambridge, MA 02138

Abstract

I explain the difference between the Higgs mechanism and the Higgs, discuss various options for spontaneous $SU(2) \times U(1)$ symmetry breaking and quark and lepton mass generation, and speculate about chiral gauge theories.

Data

Data 2011, $\sqrt{s} = 7$ TeV, Ldt = 4.8 fb

ATLAS T Preliminary

700

600

- ATLAS + CMS have excesses in $\gamma\gamma$
- Backed up by collections of 4l events
- Slight excesses in CMS low res. channels
- "Smells" right

Consistent with other fundamental laws:

Pauli's Other Exclusion Principle

As I am currently stretched between continents, I ponder over the differences between the US and Europe. Apart from the taste of food and the size of humans, there seems to be a fundamental difference at the level of particle physics. Let's have a closer look at the time and place of discoveries of elementary particles:

- · Tau neutrino, 2000, Fermilab, United States
- · Top quark, 1995, Fermilab, United States
- · W and Z bosons, 1983, CERN, Switzerland
- · Gluon, 1979, DESY, Germany
- · Bottom quark, 1977, Fermilab, United States
- Tau, 1975, SLAC, United States
- · Charm quark, 1974, SLAC/Brookhaven, United States
- · Up, down, and strange quarks, 1968, SLAC, United States
- · Muon neutrino, 1962, Brookhaven, United States
- · Electron neutrino, 1956, Los Alamos, United States
- · Muon, 1936, Caltech, United States
- · Photon, 1905, Patent Office in Bern, Switzerland
- · Electron...let's skip that one for simplicity...

This can be summarized as Pauli's other exclusion principle:

Fermions are discovered in the US, whereas bosons are discovered in Europe.

Resonaances - Falkowski

Naturalness and a Composite Higgs

- Higgs not necessarily a fundamental scalar
 - composite at the TeV/few-TeV scale
- Composite models 'natural' in sense that the loops that correct the higgs mass are cut off at a much lower scale (little hierarchy often remains)
- models which combine these ideas address LH prob
 - Little Higgs, composite SUSY, ...
- motivates a simplified model approach to CH
 - what are generic signatures/constraints?

Unitarity

- The principle of unitarity in EWSB provides the strongest justification for the LHC program
- The Higgs (or cousins) had to be there

Amplitude grows with energy - non-perturbative for E>>M SM: Fixed by including higgs contributions (gauge invariance forces a 'sum-rule')

Gaugephobic Higgs

Limit of decoupled Higgs

Unitarity with only vectors:

gauge resonances terminate growth of amplitudes via KK-mode sum rule

t channel exchange

u channel exchange

 $\mathcal{A} = A^{(4)} \frac{E^4}{M_1^4} + A^{(2)} \frac{E^2}{M_2^2} + A^{(0)} + \mathcal{O}\left(\frac{M_n^2}{E^2}\right)$

$$A^{(2)} = \frac{i}{M_n^2} \left(4g_{nnnn} M_n^2 - 3\sum_k g_{nnk}^2 M_k^2 \right) \left(f^{ace} f^{bde} - \sin^2 \frac{\theta}{2} f^{abe} f^{cde} \right)$$
$$g_{nnnn} M_n^2 = \frac{3}{4} \sum_k g_{nnk}^2 M_k^2$$

sum rule automatic (5D gauge invariance)

review: Csaki, JH, Meade

Simplified model for LHC unitarity

WIP: Bellazzini, Csáki, JH, Serra, Terning

- Unitarity sum-rule only partially saturated by Higgs exchange diagrams - suppressed couplings
- one set of vector resonances (ρ's) completes saturation of the electroweak GB sum-rules
 - non-linear realization of custodial coset:
 - SU(2)_L x SU(2)_R/SU(2)_C a-la hidden local
 symmetry Cassalbuoni, Curtis, Dominici, Gatto '87
 Falkowski, Grojean, Kaminska, Pokorski, Weiler '11
 - ρ's come as triplet of SU(2)_C

The Goldstones

Symmetry spontaneously broken at $f = v_{ew}$

Element of coset G/H: $U(\Pi) = e^{i\Pi^{\hat{a}}T^{\hat{a}}}$

$$-iU^{-1}\partial_{\mu}U = \Pi^{\hat{a}}_{\mu}T^{\hat{a}} + E^{a}_{\mu}T^{a} \equiv \Pi_{\mu} + E_{\mu}$$
Under transformation g₀ in G:

$$\Pi_{\mu} \rightarrow h(\Pi, g_{0})\Pi_{\mu}h^{-1}(\Pi, g_{0})$$

$$E_{\mu} \rightarrow h(\Pi, g_{0})E_{\mu}h^{-1}(\Pi, g_{0}) - ih(\Pi, g_{0})\partial h^{-1}(\Pi, g_{0})$$

 Π_{μ} transforms linearly E_{μ} transforms like gauge field

The Goldstones

Build action that is invariant under G:

$$\mathcal{L}_{\Pi}^{(2)} = \frac{f^2}{2} \operatorname{Tr}[\Pi_{\mu}\Pi^{\mu}]$$

Goldstone kinetic terms

Add Higgs interactions (singlet couplings):

$$\mathcal{L}^{(h)} = \frac{1}{2} (\partial h)^2 + V(h) + \frac{f^2}{2} (2a_h \frac{h}{f} + b_h \frac{h^2}{f^2}) \text{Tr}[\Pi_{\mu}\Pi^{\mu}]$$
free parameters

 a_h sets $h\pi\pi$ coupling - unitarity saturated for $a_h = I$

The p's

With E_{μ} , can write down invariant action that includes additional gauge fields transforming under SU(2)_C

$$\mathcal{L}_{\rho}^{(2)} = -\frac{1}{4g_{\rho}^{2}}\rho_{\mu\nu}^{a}\rho_{\mu\nu}^{a} + \frac{a_{\rho}^{2}f^{2}}{2}(\rho_{\mu}^{a} - E_{\mu}^{a}(\Pi))^{2}$$

Generates a ρ mass: $m_{\rho} = a_{\rho}g_{\rho}f$

$\begin{array}{l} g_{\rho} \mbox{ sets self-interactions of } \rho \mbox{'s} \\ a_{\rho} \mbox{ sets mass, interactions with goldstones, and adds} \\ \mbox{ goldstone self-interactions} \end{array}$

Higgs couplings to p's:

$$\left(\mathcal{L}_{h\rho} = \frac{f^2}{2} (2c_h \frac{h}{f} + d_h \frac{h^2}{f^2}) (\rho_{\mu}^a - E_{\mu}^a)^2 \right)$$

SM Gauge Bosons

Gauging SU(2)_LxU(1)_Y: gauge fields in Π_{μ} and E_{μ} .

SU(2)_C insures against large T-parameter

after diagonalization, have explicit ρVV couplings:

$$g_{WW\rho^0} = -\frac{g_2^2}{4g_\rho} = -\left(\frac{\sqrt{g_1^2 + g_2^2}}{4g_\rho}\right) g_{WWZ}^{SM}$$
$$g_{\rho WZ} = -\left(\frac{g_2}{4g_\rho}\right) \sqrt{g_1^2 + g_2^2} = -\left(\frac{g_1^2 + g_2^2}{4g_2g_\rho}\right) g_{WWZ}^{SM}$$

participates in unitarization of VBS

Couplings to light fermions

mixing also generates couplings to non-composite fermions:

$$\mathcal{L}_{\rho-currents}^{(elment.)} = -\frac{g_2^2}{2\sqrt{2}g_{\rho}}\rho_{\mu}^{\pm}\bar{\psi}\gamma^{\mu}T^{\mp}\psi + \rho_{\mu}^0\bar{\psi}\left[\frac{(g_1^2 - g_2^2)}{2g_{\rho}}T^3 - \frac{g_1^2}{2g_{\rho}}Q\right]\gamma^{\mu}\psi$$

light quark coupling - Drell Yan production

Couple with strength
$$g_{\rho \bar{f} f} = g_{\rm SM} \left(a_{\rho} \frac{m_W}{m_{\rho}} \right)$$

Heavy fermions may be composite carry charge under SU(2)_C couple strongly

The Model - Summary

We gauge unbroken global $SU(2)_C$

 g_{ρ} is ρ 'gauge coupling' a_{ρ} fixes ρ mass a_h controls suppression of higgs couplings $\mathcal{L} = \frac{v^2}{2} (\Pi_{\mu}^{\hat{a}})^2 - \frac{1}{4} (\rho_{\mu\nu}^{a})^2 + a_{\rho}^2 \frac{v^2}{2} \left(g_{\rho} \rho_{\mu}^{a} - E_{\mu}^{a} \right)^2$ $+ \frac{1}{2}(\partial_{\mu}h)^{2} + V(h) + \frac{v^{2}}{2}\left(2a_{h}\frac{h}{v} + b_{h}\frac{h^{2}}{v^{2}}\right)(\Pi_{\mu}^{\hat{a}})^{2} + \frac{v^{2}}{2}\left(2c_{h}\frac{h}{v} + d_{h}\frac{h^{2}}{v^{2}}\right)\left(g_{\rho}\rho_{\mu}^{a} - E_{\mu}^{a}\right)^{2}$ $+ O(p^4)$ Sufficient to consider π scattering for unitarity (goldstones eaten by W, Z) Electroweak bosons mix with p's couple to SM gauge fields/fermions Specific models predict values for some/all parameters

Unitarization

Couplings and masses must satisfy sum rules to ensure perturbative W/Z scattering

 $\mathcal{M}(\pi^+\pi^- \to \pi^+\pi^-) = \frac{1}{32\pi} \frac{s}{f^2} \left(1 - a_h^2 - \hat{a}_\rho^2\right) - \frac{1}{48\pi f^2} \left[m_\rho^2 \hat{a}_\rho^2 (1 - 2\log[s/m_\rho^2]) + 3m_h a_h^2 (2m_h - i\Gamma_h)\right]$ $\hat{a}_{\rho}^{2} \equiv \frac{3}{4}a_{\rho}^{2}$ Sum Rule: $a_{h}^{2} + \frac{3}{4}a_{\rho}^{2} = 1$ Log growth remains We limit m_{ρ} by requiring perturbative scattering up to a few TeV (LHC unitarity) include inelastic channels

Parameters

Unitarity sum-rule fixes a_ρ in terms of a_h

VB Mass matrix set by g_{ρ} , a_{ρ} , and f=246 GeV

Mixing with SM gauge fields determines most interesting phenomenology

effectively have a 2-parameter model

We parameterize in terms of a_h and m_ρ

Turn that Higgs bound up-side down! $\sigma/\sigma_{\rm SM}$ Comb. CMS

2.00

1.50

Exercise: Higgs is at mass m_H , but with suppressed overall couplings

> Saturate s-growth sum-rule

What is max allowed ρ mass?

The unitarity constraint

Pink regions forbidden for different values of effective cutoff

As Higgs couplings reduced, p's must come in earlier to unitarize scattering

Vector Production

- Vector Boson Fusion
 - Pro: model independent (unitarity)
 - Con: cross section small, signal challenging
- Drell-Yan
 - most models have mixing with SMW's, Z
 - coupling to light quarks (but small)
 - Pro: potentially large (enough) σ
 - Con: model dependent production

Vector decays

- The ρ's are composite strongly interacting states
 - prefer to decay to other composites
 - massive degrees of freedom typically have larger degrees of compositeness

$$\begin{pmatrix}
\rho^{0} \rightarrow W^{+}W^{-} & \rho^{\pm} \rightarrow W^{\pm}Z \\
\rightarrow \overline{t}t & \rightarrow \overline{b}t(\overline{t}b) \\
\rightarrow \overline{b}b
\end{pmatrix}$$

decays to light fermions typically suppressed

decays to 3rd gen fermions present challenging final states resonances in di-boson spectrum (leptonic) best bet

Modeling the ρ^0

Z' with suppressed coupling to light quarks

High mass Higgs search restricts values of $\lambda^2 \operatorname{Br}(\rho^0 \rightarrow WW)$ Seems hard - Higgs search is very optimized for SM

Recent Bounds on Z' bosons

O.J.P. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia.

Really requires dedicated di-boson resonance search

Modeling charged p's

W' with suppressed coupling to fermions

Search for W'/techni-rho limits $\lambda^2 Br(\rho^0 \rightarrow WW)$

Limits on charged p's

Implemented model in Madgraph

 m_{ρ}

 M_V [GeV]

Higgs to YY in composite models

 Higgs couplings in composite models are modified

$$\lambda_i = \lambda_i^{\rm SM} \left(1 + c \left(\frac{v}{f} \right)^2 \right)$$

- f is related to scale of compositeness
 - decay constant in higgs as PGB
- Of primary interest are hWW, htt, hbb couplings

Unitarity arguments

- in composite models, higgs couplings are generally <u>suppressed</u>
 - otherwise sum rules supersaturated
 - hard to get negative contribution
 - exception: Falkowski, Rychkov, Urbano (2012)
 - best bet for increase in signal is decrease in hbb coupling, or new charged fields

Enhancement in YY

• Charged ρ 's may contribute in h $\gamma\gamma$ triangle

$$\mathcal{L} = \frac{v^2}{2} (\Pi_{\mu}^{\hat{a}})^2 - \frac{1}{4} (\rho_{\mu\nu}^a)^2 + a_{\rho}^2 \frac{v^2}{2} \left(g_{\rho} \rho_{\mu}^a - E_{\mu}^a \right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 + V(h) + \frac{v^2}{2} \left(2a_h \frac{h}{v} + b_h \frac{h^2}{v^2} \right) (\Pi_{\mu}^{\hat{a}})^2 + \frac{v^2}{2} \left(2c_h \frac{h}{v} + d_h \frac{h^2}{v^2} \right) \left(g_{\rho} \rho_{\mu}^a - E_{\mu}^a \right)^2 + O(p^4)$$

This coupling is arb. from perspective of low energy EFT

Can compensate for reduction in gg coupling common in composite models

Conclusions

- A simplified model approach to Higgs compositeness
 new VB's in representation of SU(2)_C
- new vector masses bounded from above (unitarity) and below (LHC)
- Can manage increase in h signal, even with suppressed couplings (new triangle diagrams)
- Upcoming experimental searches for di-boson resonances will be extremely valuable