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• ATLAS + CMS have excesses in γγ

• Backed up by collections of 4l events

• Slight excesses in CMS low res. channels

• “Smells” right
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Figure 1: The invariant or transverse mass distributions for the selected candidate events, the total back-

ground and the signal expected in the H → γγ (a), the H → ZZ(∗) → !+!−!+!− in the low mass region

(b), H → ZZ(∗) → !+!−!+!− in the entire mass range (c), and the H →WW (∗) → !+ν!−ν (d) channels.
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Figure 1: The invariant or transverse mass distributions for the selected candidate events, the total back-

ground and the signal expected in the H → γγ (a), the H → ZZ(∗) → !+!−!+!− in the low mass region

(b), H → ZZ(∗) → !+!−!+!− in the entire mass range (c), and the H →WW (∗) → !+ν!−ν (d) channels.

3

Ev
en

ts
/1

0 
G

eV
/c

2

100 110 120 130 140 150 160

0.99750.9980.99850.9990.99951
1.00051.001

100 110 120 130 140 150 160

0.99750.9980.99850.9990.99951
1.00051.001

]2 [GeV/c4lM
100 110 120 130 140 150 160

2
Ev

en
ts

/2
 G

eV
/c

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
DATA
Z+X
ZZ

2=140 GeV/cHm
2=120 GeV/cHm

CMS Preliminary 2011 -1 = 7 TeV  L = 4.71 fbs

]2 [GeV/c4lM
100 110 120 130 140 150 160

2
Ev

en
ts

/2
 G

eV
/c

0

1

2

3

4

5

6
DATA

Z+jets

ZZ

2=140 GeV/cHm

2=120 GeV/cHm

CMS Preliminary 2011 -1 = 7 TeV  L = 4.03 fbs

]2 [GeV/c4lM
100 110 120 130 140 150 160

2
Ev

en
ts

/2
 G

eV
/c

0

1

2

3

4

5

6
DATA

Z+X

ZZ
2=140 GeV/cHm
2=120 GeV/cHm

CMS Preliminary 2011 -1 = 7 TeV  L = 4.73 fbs

LE
P 

 e
xc

lu
de

d 
(9

9%
 C

.L
.)

100 110 120 130 140 150 160

0.998
0.9985
0.999
0.99951

100 110 120 130 140 150 160

0.998
0.9985
0.999
0.99951

]2 [GeV/c4lM
100 110 120 130 140 150 160

2
Ev

en
ts

/2
 G

eV
/c

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
DATA
Z+X
ZZ

2=140 GeV/cHm
2=120 GeV/cHm

CMS Preliminary 2011 -1 = 7 TeV  L = 4.71 fbs

]2 [GeV/c4lM
100 110 120 130 140 150 160

]2 [GeV/c4lM
100 110 120 130 140 150 160

Ev
en

ts
/2

 G
eV

/c
2

The “Higgs”
at 125(ish)



Consistent with other 
fundamental laws:

Resonaances - Falkowski



Naturalness and a Composite Higgs
• Higgs not necessarily a fundamental scalar 

• composite at the TeV/few-TeV scale

• Composite models ‘natural’ in sense that the loops 
that correct the higgs mass are cut off at a much 
lower scale (little hierarchy often remains)

• models which combine these ideas address LH prob

• Little Higgs, composite SUSY, ...

• motivates a simplified model approach to CH

• what are generic signatures/constraints?



Unitarity
• The principle of unitarity in EWSB provides the 

strongest justification for the LHC program

• The Higgs (or cousins) had to be there

Amplitude grows with energy - non-perturbative for E>>M

SM:  Fixed by including higgs contributions 
(gauge invariance forces a ‘sum-rule’) 

⇠
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Gaugephobic Higgs

Figure 4: The four diagrams contributing at tree level to the elastic scattering amplitude
of the nth KK mode.

gauge bosons without a higgs scalar: the scattering amplitude of longitudinal gauge bosons
will grow with the energy and violate unitarity at a low scale. What we would like to first
understand is what happens to this unitarity bound in a theory with extra dimensions. For
simplicity we will be focusing on the elastic scattering of the longitudinal modes of the nth

KK mode (see fig. 2). The kinematics of this process are determined by the longitudinal
polarization vectors and the incoming and outgoing momenta:

εµ = (
|"p|
M

,
E

M

"p

|"p|)

pin
µ = (E, 0, 0,±

√

E2 −M2
n)

pout
µ = (E,±

√

E2 −M2
n sin θ, 0,±

√

E2 −M2
n cos θ). (3.1)

The diagrams that can contribute to this scattering amplitude in a theory with massive
gauge bosons (but no scalar Higgs) are given in Fig. 3 (where the E-dependence can be
estimated from ε ∼ E, pµ ∼ E and a propagator ∼ E−2). This way we find that the
amplitude could grow as quickly as E4, and then for E # MW can expand the amplitude
in decreasing powers of E as

A = A(4) E4

M4
n

+ A(2) E2

M2
n

+ A(0) + O
(

M2
n

E2

)

. (3.2)

In the SM (and any theory where the gauge kinetic terms form the gauge invariant combi-
nation F 2

µν) the A(4) term automatically vanishes, while A(2) is only cancelled after taking
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Unitarity with only vectors:

gauge resonances terminate 
growth of amplitudes via 

KK-mode sum rule

Figure 4: The four diagrams contributing at tree level to the elastic scattering amplitude
of the nth KK mode.
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the Higgs exchange diagrams into account.

In the case of a theory with an extra dimension with BC breaking of the gauge sym-
metry there are no Higgs exchange diagrams, however one needs to sum up the exchanges
of all KK modes, as in Fig. 4. As a result we will find the following expression for the terms
in the amplitudes that grow with energy:

A(4) = i

(

g2
nnnn −

∑

k

g2
nnk

)

(

fabef cde(3 + 6 cos θ − cos2 θ) + 2(3− cos2 θ)facef bde
)

, (3.3)

In order for the term A(4) to vanish it is enough to ensure that the following sum rule
among the coupling of the various KK modes is satisfied:

g2
nnnn =

∑

k

g2
nnk. (3.4)

Assuming A(4) = 0 we get

A(2) =
i

M2
n

(

4gnnnnM
2
n − 3

∑

k

g2
nnkM

2
k

)

(

facef bde − sin2 θ
2 fabef cde

)

. (3.5)

Here g2
nnnn is the quartic self-coupling of the nth massive gauge field, while gnnk is the cubic

coupling between the KK modes. In theories with extra dimensions these are of course
related to the extra dimensional wave functions fn(y) of the various modes as

gmnk = g5

∫

dyfm(y)fn(y)fk(y),

g2
mnkl = g2

5

∫

dyfm(y)fn(y)fk(y)fl(y). (3.6)

The most important point about the amplitudes in (3.3-3.5) is that they only depend on
an overall kinematic factor multiplied by an overall expression of the couplings. Assuming
that the relation (3.4) holds we can find a sum rule that ensures the vanishing of the A(2)

term:

gnnnnM
2
n =

3

4

∑

k

g2
nnkM

2
k (3.7)

Amazingly, higher dimensional gauge invariance will ensure that both of these sum
rules are satisfied as long as the breaking of the gauge symmetry is spontaneous. For
example, it is easy to show the first sum rule via the completeness of the wave functions
fn(y):

∫ πR

0

dy f 4
n(y) =

∑

k

∫ πR

0

dy

∫ πR

0

dz f 2
n(y)f 2

n(z)fk(y)fk(z), (3.8)
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review:  Csaki, JH, Meade

sum rule automatic
(5D gauge invariance)

the Higgs exchange diagrams into account.
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Limit of decoupled Higgs



Simplified model for LHC 
unitarity

• Unitarity sum-rule only partially saturated by 
Higgs exchange diagrams - suppressed couplings

• one set of vector resonances (ρ’s) - completes 
saturation of the electroweak GB sum-rules

• non-linear realization of custodial coset:

•  SU(2)L x SU(2)R/SU(2)C a-la hidden local 
symmetry

• ρ’s come as triplet of SU(2)C

WIP: Bellazzini, Csáki, JH, Serra, Terning

Cassalbuoni, Curtis, Dominici, Gatto ’87
Falkowski, Grojean, Kaminska, Pokorski, Weiler ’11
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1 The CCWZ parametrization

Let’s consider a global group G which is broken spontaneously to a subgroup H. At low energies,
the relevant dynamics is captured by the resulting Goldstone bosons which live in the coset
space G/H. In order to deal with fields defined up to g(x) ⇠ g(x)h(x) we can use the standard
parametrization developed by Callan, Coleman, Wess and Zumino (CCWZ) in two seminal papers
on non-linear realizations of symmetries [1]. We summarize here the CCWZ method.

Every g 2 G in a neighborhood of the identity can be written in this convenient form g =
e

i⇧âT â
e

i⌘aT a
that defines the parametrization of the coset. The action of the group G on the coset

is given by
U(⇧) = e

i⇧âT â
g0U(⇧) = U(⇧0)h(⇧, g0) (1.1)

where h 2 H. Therefore, the Goldstone boson transformation reads

U(⇧)! U(⇧0) = g0U(⇧)h�1(⇧, g0) (1.2)

that is a non-linear transformation of G. On the Lie algebra we can project along the broken and
unbroken generators1 defining two vector fields

� iU

�1
@µU = ⇧â

µT
â + E

a
µT

a ⌘ ⇧µ + Eµ (1.3)

which transform in this way

⇧µ !h(⇧, g0)⇧µh
�1(⇧, g0) (1.4)

Eµ !h(⇧, g0)Eµh
�1(⇧, g0)� ih(⇧, g0)@h

�1(⇧, g0) . (1.5)

Note that the vector field ⇧µ transforms linearly whereas Eµ like a “gauge field” but the fact that
it is not an independent degree of freedom

E

a
µ = �iTr[T a

U

�1
@µU ] ⇧â

µ = �iTr[T â
U

�1
@µU ] . (1.6)

We can also introduce a covariant derivative rµ = @µ � iEµ.
With all these covariant variables we can now easily define G-symmetric actions on G/H. For

instance, to the lowest order in fields and derivatives we have

L(2)
⇧ =

f

2

2
Tr[⇧µ⇧µ] (1.7)

1T a and T â are respectively the unbroken and broken generators with Tr[TATB ] = �AB

2

Element of coset G/H:
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i⇧âT â
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â + E

a
µT

a ⌘ ⇧µ + Eµ (1.3)

which transform in this way

⇧µ !h(⇧, g0)⇧µh
�1(⇧, g0) (1.4)

Eµ !h(⇧, g0)Eµh
�1(⇧, g0)� ih(⇧, g0)@h

�1(⇧, g0) . (1.5)

Note that the vector field ⇧µ transforms linearly whereas Eµ like a “gauge field” but the fact that
it is not an independent degree of freedom

E

a
µ = �iTr[T a

U

�1
@µU ] ⇧â
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U

�1
@µU ] . (1.6)

We can also introduce a covariant derivative rµ = @µ � iEµ.
With all these covariant variables we can now easily define G-symmetric actions on G/H. For

instance, to the lowest order in fields and derivatives we have

L(2)
⇧ =

f

2

2
Tr[⇧µ⇧µ] (1.7)
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Symmetry spontaneously broken at f = vew



The Goldstones
Build action that is invariant under G:
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unbroken generators1 defining two vector fields
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which transform in this way
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Note that the vector field ⇧µ transforms linearly whereas Eµ like a “gauge field” but the fact that
it is not an independent degree of freedom
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We can also introduce a covariant derivative rµ = @µ � iEµ.
With all these covariant variables we can now easily define G-symmetric actions on G/H. For

instance, to the lowest order in fields and derivatives we have
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⇧ =
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2

2
Tr[⇧µ⇧µ] (1.7)

1T a and T â are respectively the unbroken and broken generators with Tr[TATB ] = �AB
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free parameters

3 Adding a scalar resonance: the Higgs

The leading order lagrangian for scalar h which is a singlet under H is very simple [6, 7]:

L(h) =
1

2
(@h)2 + V (h) +
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important for the ⇧� ⇧ elastic scattering.

4 Custodial symmetry: SU(2)
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⇥ SU(2)

R

/SU(2)

L+R

We want to apply the general formalism studied so far to the case G = SU(2)L ⇥ SU(2)R broken
down to H = SU(2)L+R:

g(x) = (gL(x), gR(x)) ⇠ (gL(x)h(x), gR(x)h(x)) (4.1)

We also weakly gauge its SU(2)L ⇥ U(1)Y subgroup. We restrict ourself to the case where parity
L $ R is unbroken in the limit of vanishing electroweak coupling. As long as no light scalar is
included, this model is the same as [17].

Thanks to parity, the Goldstone bosons can be parametrized as
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transformation we can set ⌘ = 0 (i.e. we are going to use the CCWZ parametrization hereafter).
Note that ⌃ = gLg
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L, R 2 SU(2) (4.3)

and corresponds to the standard (2,2) bi-doublet.
We can now write down the explicit covariant operators, namely
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where cW = e
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Wµe

i⇧ 3 and ⇧µ = ⇧L
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µ . From the lowest order lagrangian
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3We re-introduced the SM gauge bosons by means of �ig�1@µg ! �ig�1Dµg = ⇧â
µT â + Ea

µT a where Dµ =
@µ � iWµ.
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1 The CCWZ parametrization

Let’s consider a global group G which is broken spontaneously to a subgroup H. At low energies,
the relevant dynamics is captured by the resulting Goldstone bosons which live in the coset
space G/H. In order to deal with fields defined up to g(x) ⇠ g(x)h(x) we can use the standard
parametrization developed by Callan, Coleman, Wess and Zumino (CCWZ) in two seminal papers
on non-linear realizations of symmetries [1]. We summarize here the CCWZ method.

Every g 2 G in a neighborhood of the identity can be written in this convenient form g =
e

i⇧âT â
e

i⌘aT a
that defines the parametrization of the coset. The action of the group G on the coset

is given by
U(⇧) = e

i⇧âT â
g0U(⇧) = U(⇧0)h(⇧, g0) (1.1)

where h 2 H. Therefore, the Goldstone boson transformation reads

U(⇧)! U(⇧0) = g0U(⇧)h�1(⇧, g0) (1.2)

that is a non-linear transformation of G. On the Lie algebra we can project along the broken and
unbroken generators1 defining two vector fields

� iU
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@µU = ⇧â

µT
â + E
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a ⌘ ⇧µ + Eµ (1.3)

which transform in this way

⇧µ !h(⇧, g0)⇧µh
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Eµ !h(⇧, g0)Eµh
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Note that the vector field ⇧µ transforms linearly whereas Eµ like a “gauge field” but the fact that
it is not an independent degree of freedom

E

a
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We can also introduce a covariant derivative rµ = @µ � iEµ.
With all these covariant variables we can now easily define G-symmetric actions on G/H. For

instance, to the lowest order in fields and derivatives we have

L(2)
⇧ =

f

2

2
Tr[⇧µ⇧µ] (1.7)

1T a and T â are respectively the unbroken and broken generators with Tr[TATB ] = �AB

2

Add Higgs interactions (singlet couplings):

ah sets hππ coupling - unitarity saturated for ah=1

Goldstone kinetic terms



The ρ’s
With      , can write down invariant action that includes 

additional gauge fields transforming under SU(2)C

Eµ

If a subgroup of H0 ⇢ G is weakly gauged we just need to send @µ ! @µ � iWµ and add the
kinetic terms for Wµ

We end this section recalling that in the presence of automorphism R of the alebgra that
changes sign to the broken generators

T
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we have
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g0⌃(⇧)R(g0)
�1 = ⌃(⇧0) . (1.10)

For instance, in the chiral symmetry SU(2)L ⇥ SU(2)R/SU(2)L+R the automorphism is given by
the parity P : gL $ gR so that ⌃ �! gR⌃g

�1
L under SU(2)L+R.

2 Adding a massive spin 1 resonance

The simplest way to add a massive spin 1 resonance is to add a vector ⇢µ transforming in some
way under the unbroken gauge group H. Following [2, 3] we take ⇢µ transforming like a gauge
boson
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This choice is suggested by the fact that a massive vector field which doesn’t couple to a conserved
current gives rise, via the exchange of longitudinal ⇢

L
µ , to non-renormalizable operators suppresed

by inverse powers of m⇢. From the point of view of an e↵ective field theory (EFT) this is unnatural
because non-renormalizable terms should be weighted by the cuto↵ scale ⇤� m⇢ where the EFT
breaks down. According to the rule of a natural EFT, one would restore the ⇤’s by including
small couplings as (m⇢/⇤) to some power. The “gauge boson transformation rule” (2.1) instead
keeps track automatically of this counting without messing up with NDA [4].

The lowest order action in ⇢ and its derivatives is
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where m⇢ = a⇢g⇢f if there is no mixing with other sectors2. Note that along with ⇢µ�⇧ couplings
there are contact interaction terms involing ⇧ alone. These are exactly the terms responsible for
the cancellations of o(s2) growth of the elastic ⇧�⇧ scattering [2, 5, 6]. Ln>2 could re-introduce
this o(s2) growth but it comes suppressed by inverse powers of ⇤. We have not added terms like
(⇢a

µ � E

a
µ)⇧a

µ because it would rotate the ⇧’s in a di↵erent combination. We are assuming we
alredy diagonalized the mass matrix.

Note that (2.3) is equivalent to the lagrangians considered in the hidden local symmetry
models [8]. Actually, in SQCD the ⇢ appears to be the gauge boson associated with the magnetic
SU(Nf �Nc) [9] .

2Mixings occur for instance when we weakly gauge a H0 ⇢ G.
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3 Adding a scalar resonance: the Higgs

The leading order lagrangian for scalar h which is a singlet under H is very simple [6, 7]:
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important for the ⇧� ⇧ elastic scattering.

4 Custodial symmetry: SU(2)
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We want to apply the general formalism studied so far to the case G = SU(2)L ⇥ SU(2)R broken
down to H = SU(2)L+R:

g(x) = (gL(x), gR(x)) ⇠ (gL(x)h(x), gR(x)h(x)) (4.1)

We also weakly gauge its SU(2)L ⇥ U(1)Y subgroup. We restrict ourself to the case where parity
L $ R is unbroken in the limit of vanishing electroweak coupling. As long as no light scalar is
included, this model is the same as [17].

Thanks to parity, the Goldstone bosons can be parametrized as
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a). Up to a local H
transformation we can set ⌘ = 0 (i.e. we are going to use the CCWZ parametrization hereafter).
Note that ⌃ = gLg
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R transforms linearly
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and corresponds to the standard (2,2) bi-doublet.
We can now write down the explicit covariant operators, namely
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where cW = e
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i⇧ 3 and ⇧µ = ⇧L
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µ . From the lowest order lagrangian
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3We re-introduced the SM gauge bosons by means of �ig�1@µg ! �ig�1Dµg = ⇧â
µT â + Ea

µT a where Dµ =
@µ � iWµ.
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SM Gauge Bosons
Gauging SU(2)LxU(1)Y:  gauge fields in      and     .       ⇧µ Eµ
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corresponds to the “vector meson dominance” of tho ⇢ meson in QCD and it gives special relations
(see [9] and reference therein).
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It’s clear now that the physical weak and electri charges are respectively

g ⌘ g2c3 e ⌘ e0c1 (4.15)

where e0 = g1g2p
g2
1+g2

2

.

4.3 Coupling to fermions

Assuming all SM fermions are elementary we get the ⇢-fermion coupling only via mixing. For
instance8 at the lowest order g/g⇢ the physical gauge bosons are recovered by
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where we have suppressed the index “ph” (within this approximation electric and weak charges
are untouched, g = g2 and e = e0). Thus, the ⇢ coupling to elementary SM fermion is

L(elment.)
⇢�currents = � g

2
2

2
p

2g⇢

⇢

±
µ  ̄�

µ
T

⌥
 + ⇢

0
µ ̄


(g2

1 � g

2
2)

2g⇢

T

3 � g

2
1

2g⇢

Q

�
�

µ
 (4.20)

4.4 Coupling to gauge bosons

The trilinear gauge boson self-interactions are
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8Eq. (4.50) seems a factor of 2 o↵ with respect to (4.1) in [2].
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and thus the ⇢-trilinear vertex is just like for standard gauge bosons (same Lorentz contractions)
but rescaled
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4.5 Coupling the Higgs

As we saw in sect. (3) the Higgs has trilinear couplings to both gauge bosons and ⇢. Up to vertices
with 3-fields they are
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A special case is when ch = a

2
⇢ah so that the Higgs couples to the physical vector states just by

replacing their mass term
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It’s clear now that the physical weak and electri charges are respectively

g ⌘ g2c3 e ⌘ e0c1 (4.15)

where e0 = g1g2p
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.

4.3 Coupling to fermions

Assuming all SM fermions are elementary we get the ⇢-fermion coupling only via mixing. For
instance8 at the lowest order g/g⇢ the physical gauge bosons are recovered by
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where we have suppressed the index “ph” (within this approximation electric and weak charges
are untouched, g = g2 and e = e0). Thus, the ⇢ coupling to elementary SM fermion is
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4.4 Coupling to gauge bosons

The trilinear gauge boson self-interactions are

Lgauge = g⇢✏
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µ⇢
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⌫ W
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8Eq. (4.50) seems a factor of 2 o↵ with respect to (4.1) in [2].
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Couple with strength g⇢f̄f = gSM

✓
a⇢

mW

m⇢

◆

Heavy fermions may be composite 
 carry charge under SU(2)C 

couple strongly



The Model - Summary1 Lagrangian and interactions

Assume EWSB by strong dynamics, with the global symmetry breaking pattern G ! H = SU(2)L⇥
SU(2)R ! SU(2)C with characteristic scale v ' 246 GeV. The residual SU(2)C custodial symmetry

is introduced in order to avoid O(1) contributions to the bT -parameter. Besides the NGBs eaten by

W and Z, ⇡â, assume the presence of a light (⌧ 4⇡v) spin-1 vector in the adjoint 3 of SU(2)C , ⇢a
µ,

and a light scalar singlet 1 of SU(2)C , h. The Lagrangian for such a system is given by,

L =
v2

2
(⇧â

µ)2 � 1

4
(⇢a

µ⌫)
2 + a2

⇢

v2

2

�

g⇢⇢
a
µ � Ea

µ

�2

+
1

2
(@µh)2 + V (h) +

v2

2

✓

2ah
h

v
+ bh

h2

v2

◆

(⇧â
µ)2 +

v2

2

✓

2ch
h

v
+ dh

h2

v2

◆

�

g⇢⇢
a
µ � Ea

µ

�2

+ O(p4) (1)

where unhatted indices correspond to SU(2)C and hatted to SU(2)L⇥SU(2)R/SU(2)C , a, â = 1, 2, 3.

Parity PLR (SU(2)L $ SU(2)R) has been assumed in the couplings of ⇢ and h.

Scattering of longitudinal massive gauge bosons WL at high energies E2 � m2
W is well described

by WL ' ⇡. The relevant interactions following from Eq. (1) are

⇡4 :

✓

1� 3a2
⇢

4

◆

1

6v2

h

(@µ⇡
â⇡b̂)2 � (@µ⇡

â⇡â)2
i

(2)

⇢⇡2 :
a2

⇢g⇢

2
✏ab̂ĉ⇢a

µ(@µ⇡b̂)⇡ĉ (3)

h⇡2, h2⇡2 :
ah

v
h(@µ⇡

â)2,
bh

2v2
(@µ⇡

â)2 (4)

h⇢2 : chg
2
⇢vh(⇢a

µ)2. (5)

Also from Eq. (1) it follows m⇢ = a⇢g⇢v.

2 Perturbative tree-level unitarity constraints

We are going to study the the loss of perturbative unitarity in scattering amplitudes involving

longitudinal polarizations of massive gauge bosons W a
L, which in the high energy regime E2 � m2

W

are well approximated by ⇡a in Eq. (1). Such scattering amplitudes can be divided depending on

their SU(2)C symmetry structure and their total angular momentum (J). Regarding the latter, the

projection into partial waves is customary,

AJ
↵!�(s) =

asym

32⇡

Z 1

�1

d(cos ✓)PJ(cos ✓)A↵!�(s, cos ✓) (6)

1

Sufficient to consider π scattering for unitarity
(goldstones eaten by W, Z)

gρ is ρ ‘gauge coupling’      aρ fixes ρ mass
ah controls suppression of higgs couplings

We gauge unbroken global SU(2)C

Electroweak bosons mix with ρ’s
couple to SM gauge fields/fermions

Specific models predict values for some/all parameters



Unitarization
Couplings and masses must satisfy sum rules

to ensure perturbative W/Z scattering

where the single function A(s, t, u) fixes all the physical amplitudes9

M(W+
L W

�
L �! ZLZL) =A(s, t, u) (7.2)

M(ZLZL �! W

+
L W

�
L ) =A(s, t, u) (7.3)

M(W+
L W

�
L �! W

+
L W

�
L ) =A(s, t, u) + A(t, s, u) (7.4)

M(ZLZL �! ZLZL) =A(s, t, u) + A(t, s, u) + A(u, t, s) (7.5)

M(W+
L ZL �! W

+
L ZL) =A(t, s, u) (7.6)

M(W±
L W

±
L �! W

±
L W

±
L ) =A(t, s, u) + A(u, t, s) (7.7)

For the case at hand with both spin 0 singlet and spin 1 triplet coupled to ⇡’s we have

A(st, u) =
s

f

2
� a

2
h


s

2

f

2

1

s�m

2
h + imh�h✓(s)

�
(7.8)

� a

2
⇢

4f 2


3s + m

2
⇢

✓
s� u

t�m

2
⇢ + im⇢�⇢✓(t)

+
s� t

u�m

2
⇢ + im⇢�⇢✓(u)

◆�
(7.9)

where the first line comes from the Higgs whereas the second from the vector. The couplings ah

is the Higgs coupling (4.41) which is 1 in the SM. So it measure how much the Higgs contributes
to unitarization. The coupling a⇢ is defined in (4.11) as the ⇢⇡⇡-vertex.

Unitarity constraints are expressed in terms of J-th partial waves

MJ
↵�(s) =

asym

32

Z +1

�1

d(cos ✓)M↵�(cos ✓) t = �s

2
(1� cos ✓) u = �s

2
(1 + cos ✓) (7.10)

where asym = 1/
p

2 for identical particles in the initial or final states. The fastest growth comes
from J = 0 channels (s-wave channel) which in general go as o(s). For instace, the fastest process
is ⇡

+
⇡

� ! ⇡

+
⇡

�

M(⇡+
⇡

� ! ⇡

+
⇡

�) =
1

32⇡

s

f

2

�
1� a

2
h � â

2
⇢

�� 1

48⇡f

2

⇥
m

2
⇢â

2
⇢(1� 2 log[s/m2

⇢]) + 3mha
2
h(2mh � i�h)

⇤

(7.11)
where â⇢ ⌘ a⇢

p
3/2. Setting a sum rule for ah and â⇢

a

2
h + â

2
⇢ = 1 (7.12)

we can cancel all the o(s) leading behaviors in the elastic scatterings.
Assuming this sum rule we can now plot the allowed region by unitarity condition |M0| < 1

in the (m⇢, ah) plane
Assuming a certain Higgs coupling to SM gauge boson we can derive the upper limit for the

mass of the new resonance. For instance, if the Higgs is just below the Higgs exclusion plot in
Fig. (4) on the left, then the new resonance must appear below a given mass scale as shown in
Fig. (4) on the right.

9up to the symmetry factor for identical particles and an overall (�i)N where N is the number of Goldstone
bosons.
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Sum Rule: a2h +
3

4
a2⇢ = 1â2⇢ ⌘ 3

4
a2⇢

Log growth remains
We limit mρ by requiring perturbative scattering up 

to a few TeV (LHC unitarity) 

include inelastic channels



Parameters
Unitarity sum-rule fixes aρ in terms of ah

VB Mass matrix set by gρ, aρ, and f=246 GeV 

Mixing with SM gauge fields determines most interesting 
phenomenology

effectively have a 2-parameter model

We parameterize in terms of ah and mρ



Turn that Higgs bound up-side down!
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Exercise:
Higgs is at mass mH, but 
with suppressed overall 

couplings

Comb. CMS

What is max allowed ρ 
mass?

Saturate s-growth 
sum-rule



The unitarity constraint
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Vector Production
• Vector Boson Fusion

• Pro:  model independent (unitarity)

• Con:  cross section small, signal challenging

• Drell-Yan

• most models have mixing with SM W’s, Z

• coupling to light quarks (but small)

• Pro:  potentially large (enough) σ

• Con:  model dependent production 



Vector decays
• The ρ’s are composite strongly interacting states

• prefer to decay to other composites

• massive degrees of freedom typically have larger 
degrees of compositeness

⇢0 ! W+W�

! t̄t
! b̄b

⇢± ! W±Z
! b̄t(t̄b)

decays to light fermions typically suppressed

decays to 3rd gen fermions present challenging final states

resonances in di-boson spectrum (leptonic) best bet



Direct Bounds on new 
resonances
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Modeling the ρ0

⇢0

W+

W�q

q

Z’ with suppressed coupling to light quarks

High mass Higgs search restricts values of λ2 Br(ρ0→WW)

gsm�
0

Seems hard - Higgs search is very optimized for SM



Recent Z’ bounds

O.J.P. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia.
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Figure 4: 95% CL exclusion limits on the production of a Z′ from our analysis of the pleading
T

distribution measured by CMS
with L = 1.55 fb−1. The left, center and right panels correspond to three values of ΓZ′/MZ′ = 0.01 ,0.06 and 0.3 respectively.
The red solid regions are derived using the log-likelihood function in Eq. (22) with Nmax

CMS = 36. The purple hatched regions
are derived using the log-likelihood function in Eq. (22) with Nmax

CMS = 37. The shadowed regions in the upper (lower) right
corner of the upper (lower) panels represent the excluded values by the condition Eq. (3).

nor in CMS, the bounds obtained from our analysis of
the CMS data are stronger than for the ATLAS due to
the larger integrated luminosity used in the former.

Finally in Fig. 5 we present the exclusion constraints
on the production of a new neutral vector resonance from
our combined analysis of the measured MT distribution
in ATLAS with L = 1.02 fb−1 and the pleadingT distribu-
tion measured by CMS with L = 1.55 fb−1. We see that
the combination of ATLAS and CMS data have already
excluded a sizable region of the parameter space for the
production of new spin-1 Z ′ associated with the EWSB
sector. In particular, from our analysis with 15 and 36
(16 and 37) bins of the ATLAS and CMS distributions, a
narrow resonance of any mass with ΓZ′/MZ′ = 0.01 and
that saturates the partial wave amplitude for the process
W+W− → W+W−, is excluded at 95% CL if its cou-
pling to the light quarks is larger than 45% (22%) of the
SM Zq̄q coupling. Moreover, our analysis with 15 and
36 bins of the ATLAS and CMS distributions, excludes
at 95% CL a wider resonance with ΓZ′/MZ′ = 0.06 (0.3)

that saturates the partial wave amplitude for the process
W+W− → W+W− and couples to light quarks with SM
strength if MZ′ ≤ 1250 (850) GeV. From the extended
analysis using 16 and 37 bins of the ATLAS and CMS dis-
tributions we find that no such SM coupling resonance is
allowed for any mass for ΓZ′/MZ′ = 0.06 or MZ′ < 1750
GeV for ΓZ′/MZ′ = 0.3.

At this point it is interesting to compare our Z ′ bounds
with the ones obtained by the CDF collaboration analyz-
ing WW production at the Tevatron [19] in the frame-
work of the Sequential Standard Model [20]. In the CDF
analysis our coupling G is related to the parameter ξ as
G = ξ

√
3MZ′/MZ while the Z ′ width is a well defined

function of ξ and MZ′ . Generically this lead to a narrow
Z ′s with ΓZ′/MZ′ ! 0.1. For Z ′ masses of 250, 600 and
950 GeV the CDF constraints read |G| < 0.47, 0.27 and
1.36 respectively. On the other hand our analyses with-
out (with) extra bins lead to bounds |G| < 0.20, 0.12 and
0.60 (0.18, 0.067,0.15) for the same masses. In conclu-
sion, translating our bounds into the model used by CDF
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Figure 3: 95% CL exclusion limits on the production of a Z′ from our analysis of the MT distribution measured by ATLAS
with L = 1.02 fb−1 and for three values of ΓZ′/MZ′ = 0.01, 0.06 and 0.3 (left, center and right panels respectively). The red
solid regions are derived using the log-likelihood function in Eq. (13) with Nmax

AT = 15. The regions bounded by the black
dashed curves correspond to the same analysis removing the effect of the systematic pulls. The purple hatched regions are
derived using the log-likelihood function in Eq. (13) with Nmax

AT = 16. The shadowed regions in the upper (lower) right corner
of the upper (lower) panels represent the excluded values by the condition Eq. (3).

the Z ′ width ΓZ′/MZ′ = 0.01, 0.06 and 0.3 as labeled in
this figure.

The red solid regions in Fig. 3 were derived using the
log-likelihood function in Eq. (13) with Nmax

AT = 15, i.e.
with the 15 bins of the transverse mass distribution be-
tween MT = 40 GeV and MT = 340 GeV. Comparing
the left, central and right panels one observes that, as ex-
pected, bounds are stronger for narrow resonances. The
shadowed regions in the upper (lower) right corner of the
upper (lower) panels of this figure represents the excluded
values by the condition Eq. (3).

In order to illustrate the effect of the systematic uncer-
tainties included in this analysis we also show the black
dashed curves which correspond to the same analysis but
fixing the pulls to zero. As seen by comparing the dashed
curve with the boundary of the solid region, the bounds
are dominated by statistics for the available integrated
luminosity and the inclusion of the systematic uncertain-
ties have a very limited impact.

The sensitivity reach when a non-zero observation for
MT > 340 GeV is included as a 16th bin, is shown as
the purple hatched regions. The effect of the inclusion of
this additional bin is more important the heavier and the
wider Z ′ is. This is due to the fact that a heavier and/or
wider Z ′ gives a larger contribution to events with MT >
340 GeV. Finally the difference between the regions in
the upper and lower panels arises from the interference
between the SM and Z ′ contribution. As expected this
effect is only relevant for the lighter and wider Z ′ since
the interference term is roughly proportional to ΓZ′/MZ′ .

The 2σ exclusion limits on the production of a Z ′ de-
rived from our analysis of the pleadingT distribution mea-
sured by CMS with L = 1.55 fb−1 can be seen in Fig. 4.
The dependence of the excluded range of G on the Z ′

mass and width is similar to Fig. 3 as expected. The
only difference is associated with the larger event sam-
ple. As no positive signal is observed neither in ATLAS

•Reinterpretations of bounds
•W+W-→Z’→W+W-→l+l-νν

(Eboli, Gonzalez-Fraile, Gonzales-Garcia)

2

quarks and W+W− pairs in addition to its mass and
width. We do not assume any relation between these
parameters (although they might be connected in a com-
plete theory). Nevertheless, inspired by models where
the new vector states interact with the light quarks and
electroweak gauge boson via their mixing with the SM
vectors, we assume that the Z ′ couplings exhibit the same
Lorentz structure as those of the SM.

We normalize the Z ′W+W− coupling by the value
gZ′WWmax that saturates the partial wave amplitude for
the process W+W− → W+W− by the exchange of a Z ′,
[9], i.e.

gZ′WWmax = gZWW
MZ√
3MZ′

(2)

where gZWW = g cW is the strength of the SM triple
gauge boson coupling. Here g stands for the SU(2)L
coupling constant and cW is the cosine of the weak mixing
angle.

We treat the Z ′ width as a free parameter since it
can receive contributions from particles that do not play
a role in our study, such as b and t quarks. The only
bound to the Z ′ width is that it should be compatible
with its couplings to light quarks and WW pairs that is
expressed by the lower bound [7]

ΓZ′ > 0.27 |G|
(

MZ′

MZ

)2

GeV , (3)

where we have defined the combination

G =

(

gZ′qq̄

gZqq̄

) (

gZ′WW

gZ′WWmax

)

, (4)

with gZ′qq̄ being the Z ′ coupling to light quark pairs and
gZqq̄ = g/cW .

Within our approach we can express the cross section
for the process (1) as

σtot = σSM + Gσint(MZ′ ,ΓZ′) + G2 σZ′(MZ′ ,ΓZ′) (5)

where the Standard Model, interference and new reso-
nance contributions are labeled SM, int and Z ′ respec-
tively.

III. ANALYSES FRAMEWORK

ATLAS [10] and CMS [11] analyzed the W+W− pro-
duction through the final state given in Eq. (1). Our
strategy is to use the SM backgrounds that have been
carefully evaluated by the experimental collaborations
and we simulate only the Z ′ signal. However, in order to
tune and validate our Monte Carlo we also simulated the
SM production of W+W− pairs and compared with the
results presented by ATLAS and CMS.

We evaluated the signal and SM W+W− cross sec-
tions by two different methods. In the first one, we used

the package MADEVENT [12] to evaluate the O(α4) sig-
nal matrix elements for the subprocesses qq̄ → #+ν#′−ν′,
with #/#′ = e, µ as well as the small contribution with
#/#′ = τ which then decays leptonically into either e or
µ and the corresponding neutrinos. Its output is fed into
PYTHIA [13] for parton shower and hadronization and
a simple detector simulation provided by PGS 4 [14]. In
what follows we will label it as “ME+Pythia+PGS-MC”.
A second evaluation was made with a homemade Monte
Carlo that evaluates the process (1) at parton level using
the O(α4) signal matrix elements for the subprocesses
qq̄ → #+ν#′−ν′, with #/#′ = e, µ. The scattering ampli-
tudes for the relevant subprocesses were obtained using
the package MADGRAPH [12]. In what follows we will
label this calculation as “OUR ME-MC”. In both cases
we used CTEQ6L parton distribution functions [15] and
the MADEVENT default renormalization and factoriza-
tion scales.

ATLAS analysis

The ATLAS simulation of theW+W− process was car-
ried out at NLO and with an accurate detector simula-
tion. In order to take into account some of these features
included in the ATLAS evaluation of the SM W+W−

production we normalize our total cross section for the
ee, eµ and µµ channels by an overall factor such that our
two simulations yield the result presented in Table 2 of
Ref. [10] after the same cuts have been implemented. In
particular electrons and muons are accepted if

|ηe| < 1.37 or 1.52 < |ηe| < 2.47 and |ηµ| < 2.4.(6)

Also, the lepton isolation requirement in
ME+Pythia+PGS-MC simulation is that the sum
of the energy in the calorimeter cells within a cone
∆R < 0.3 around the electron must be less than 4 GeV
while in a cone ∆R < 0.2 around the muon, the sum
pT of all other tracks is less than 10% of the pT of the
muon. To implement this requirement in OUR ME-MC
we simply impose:

∆Ree > 0.3 and ∆Reµ,µµ > 0.2 . (7)

Events are selected if they verify that the leading electron
in the e+e− channel and the electron in the eµ channel
accomplish:

pT > 25 GeV, (8)

while for the muons and the subleading electron in the
e+e− channel

pT > 20 GeV. (9)

Furthermore,

M!! > 15 GeV , Meµ > 10 GeV,

|M!! −MZ | > 15 GeV, (10)

Emiss
T, rel(ee) > 40 GeV , Emiss

T, rel(µµ) > 45 GeV
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Figure 5: 95% CL exclusion limits on the production of a Z′ from our combined analysis of the measured MT distribution
in ATLAS with L = 1.02 fb−1 and the pleading

T
distribution measured by CMS with L = 1.55 fb−1. The red solid (purple

hatched) regions are derived using the log-likelihood defined in Eq. (27) with 15 and 36 (16 and 37) bins of the ATLAS and
CMS distributions respectively. The shadowed regions in the upper (lower) right corner of the upper (lower) panels represent
the excluded values by the condition Eq. (3).

we get that generically the constraints from our most con-
servative analysis of the ATLAS and CMS distributions,
i.e. without the extra bins, extend the CDF exclusion to
couplings about a factor 2 smaller for the accessible mass
range at Tevatron MZ′ ! 950. Furthermore, our results
also widen the accessible MZ′ mass range.

V. MODEL DEPENDENT RESULTS

The above analyses can be used to place bounds on
specific models once we take into account its couplings.
Generically within a given model the width of the vector
resonance and the strength of its couplings to fermions
and gauge bosons can be functions of a few parame-
ters. As an illustration we made a dedicated study of the
bounds attainable in the framework recently proposed
in Ref. [21] that exhibits a single vector SU(2)custodial–
triplet resonance that is included to saturate the unita-
rization condition. In brief in this case the couplings of

the resonance to the fermions as well as to the gauge
bosons can be cast in terms of a unique parameter gρππ
with the decay into gauge bosons being the dominant
mode. The other free parameter is the mass of the new
resonance Mρ = MZ′ . The limits derived in the previ-
ous section can not be directly applied to this case since
the Z ′ couplings to quarks differs from the SM ones. In
this example we generated the O(α4) amplitudes using
MADGRAPH. The constraints in this scenario coming
from the reaction 1 are shown in Fig. 6 and they rep-
resent the strongest bounds at present on this scenario.

Because of the existence of an associated charged res-
onance associated to the unitarization of the channel
WZ → WZ, bounds can be also imposed from the
searches of pp → ZW± such as the one performed by
the CMS collaboration [22]. CMS present the results
of their negative searches for W ′ in the framework of
the Sequential Standard Model [20] as constraints on
σ(pp → W ′) × Br(W ′ → 3lν). In Ref. [21] a simplified

Recent Bounds on Z’ bosons

Really requires dedicated di-boson resonance search

http://inspirehep.net/author/Eboli%2C%20O.J.P.?recid=1079743&ln=en
http://inspirehep.net/author/Eboli%2C%20O.J.P.?recid=1079743&ln=en
http://inspirehep.net/author/Gonzalez-Fraile%2C%20J.?recid=1079743&ln=en
http://inspirehep.net/author/Gonzalez-Fraile%2C%20J.?recid=1079743&ln=en
http://inspirehep.net/author/Gonzalez-Garcia%2C%20M.C.?recid=1079743&ln=en
http://inspirehep.net/author/Gonzalez-Garcia%2C%20M.C.?recid=1079743&ln=en


Modeling charged ρ’s
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Higgs to γγ in 
composite models

• Higgs couplings in composite models are 
modified

• f is related to scale of compositeness

• decay constant in higgs as PGB

• Of primary interest are hWW, htt, hbb 
couplings

�i = �SM
i
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v

f

◆2
!



Unitarity arguments 
• in composite models, higgs couplings are 

generally suppressed

• otherwise sum rules supersaturated

• hard to get negative contribution

• exception:

• best bet for increase in signal is decrease 
in hbb coupling, or new charged fields

Falkowski, Rychkov, Urbano (2012)



Big Higgs

getting lucky, or σ x Br is about 2 x SM
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Enhancement in γγ
• Charged ρ’s may contribute in hγγ triangle

Can compensate for reduction in gg coupling common in 
composite models

1 Lagrangian and interactions

Assume EWSB by strong dynamics, with the global symmetry breaking pattern G ! H = SU(2)L⇥
SU(2)R ! SU(2)C with characteristic scale v ' 246 GeV. The residual SU(2)C custodial symmetry

is introduced in order to avoid O(1) contributions to the bT -parameter. Besides the NGBs eaten by

W and Z, ⇡â, assume the presence of a light (⌧ 4⇡v) spin-1 vector in the adjoint 3 of SU(2)C , ⇢a
µ,

and a light scalar singlet 1 of SU(2)C , h. The Lagrangian for such a system is given by,

L =
v2

2
(⇧â

µ)2 � 1

4
(⇢a

µ⌫)
2 + a2

⇢

v2

2

�

g⇢⇢
a
µ � Ea

µ

�2

+
1

2
(@µh)2 + V (h) +

v2

2

✓

2ah
h

v
+ bh

h2

v2

◆

(⇧â
µ)2 +

v2

2

✓

2ch
h

v
+ dh

h2

v2

◆

�

g⇢⇢
a
µ � Ea

µ

�2

+ O(p4) (1)

where unhatted indices correspond to SU(2)C and hatted to SU(2)L⇥SU(2)R/SU(2)C , a, â = 1, 2, 3.

Parity PLR (SU(2)L $ SU(2)R) has been assumed in the couplings of ⇢ and h.

Scattering of longitudinal massive gauge bosons WL at high energies E2 � m2
W is well described

by WL ' ⇡. The relevant interactions following from Eq. (1) are

⇡4 :

✓

1� 3a2
⇢

4

◆

1

6v2

h

(@µ⇡
â⇡b̂)2 � (@µ⇡

â⇡â)2
i

(2)

⇢⇡2 :
a2

⇢g⇢

2
✏ab̂ĉ⇢a

µ(@µ⇡b̂)⇡ĉ (3)

h⇡2, h2⇡2 :
ah

v
h(@µ⇡

â)2,
bh

2v2
(@µ⇡

â)2 (4)

h⇢2 : chg
2
⇢vh(⇢a

µ)2. (5)

Also from Eq. (1) it follows m⇢ = a⇢g⇢v.

2 Perturbative tree-level unitarity constraints

We are going to study the the loss of perturbative unitarity in scattering amplitudes involving

longitudinal polarizations of massive gauge bosons W a
L, which in the high energy regime E2 � m2

W

are well approximated by ⇡a in Eq. (1). Such scattering amplitudes can be divided depending on

their SU(2)C symmetry structure and their total angular momentum (J). Regarding the latter, the

projection into partial waves is customary,

AJ
↵!�(s) =

asym

32⇡

Z 1

�1

d(cos ✓)PJ(cos ✓)A↵!�(s, cos ✓) (6)

1

This coupling is arb. from perspective of low energy EFT

Vanishes in Higgs as PGB



and

Ft(x) =� 2x[1 + (1� x)f(x)] FV (x) = 2 + 3x + 3x(2� x)f(x) (6.3)

f(x) =

(
arcsin2(x�1/2) x � 1

�1
4

h
log

⇣
1+
p

1�x
1�p1�x

� i⇡

⌘i2
x < 1

(6.4)

Even neglecting the axial vector contribution we get easily up to ⇠ 50% enhancement for
m⇢ ⇠ TeV, see Fig. (1)
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Figure 1: Upper-Left: values of �(h ! ��)/�SM (blue line) and resonance mass m⇢/TeV (red
line) for g⇢ = 5, at = 1, mH = 125 GeV and sum rules a

2
h + 3/4a2

⇢ = 1, a

2
⇢ = 4ahch enforced.

Upper-Right: values of �(h ! ��)/�SM (blue line) and resonance mass m⇢/TeV (red line) for
g⇢ = 5, at = ah, mH = 125 GeV and sum rules a

2
h+3/4a2

⇢ = 1, a

2
⇢ = 4ahch enforced. Lower-central:

values of �(h ! ��)/�SM (blue line) and resonance mass m⇢/TeV (red line) for g⇢ = 5, at = 1,
ah = 0.8, mH = 125 GeV and only a

2
h + 3/4a2

⇢ = 1, enforced.

Adding the contribution from an axial resonance we can even make up for the suppression in
the Higgs production. As example we consider an universal suppression to fermions by ah (i.e.
the same suppression in hWW vertex), see fig.(2)
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Can obtain enhancements in the h→γγ signal
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Conclusions

• A simplified model approach to Higgs compositeness 
- new VB’s in representation of SU(2)C

• new vector masses bounded from above (unitarity) 
and below (LHC)

• Can manage increase in h signal, even with suppressed 
couplings (new triangle diagrams)

• Upcoming experimental searches for di-boson 
resonances will be extremely valuable


